1. A car with a mass of 1,400 kg has an engine that is putting out 3440 N of force. What is the resulting acceleration?

2. A probe in a circular orbit has an orbital speed of 5,100 m/s. What speed must it go to escape from the orbit?

Answers

Answer 1

1. The resulting acceleration is approximately 2.46 m/s².

2. The probe must reach a speed higher than 5100 m/s to escape from the orbit.

1. To calculate the resulting acceleration, we can use Newton's second law of motion: force equals mass multiplied by acceleration (F = ma). Rearranging the equation, we have acceleration (a) = force (F) divided by mass (m). Plugging in the values, the acceleration is 3440 N / 1400 kg ≈ 2.46 m/s².

2. To escape from a circular orbit, the probe needs to reach the escape velocity, which is the minimum velocity required to overcome the gravitational pull. The escape velocity can be calculated using the equation v = √(2GM/r), where G is the gravitational constant, M is the mass of the celestial body, and r is the distance from the center of the body. For the probe to escape, it must reach a velocity greater than the orbital speed. Therefore, the probe must attain a speed higher than 5100 m/s to escape from the orbit.

Learn more about  acceleration here

https://brainly.com/question/19537384

#SPJ11


Related Questions

a−2.50nC charge and is 2.00 cm to the right of B. Find the magnitude (in N) and direction of the net electric force on each of the beads. Net Force on A magnitude force? Add the forces as vectors to get the net force. Be careful with units and signs. N direction Net Force on B magnitude N direction Net Force on C magnitude N direction

Answers

The net force on A has a magnitude of 312.5 N. The direction of the net force is right.

The net force on B has a magnitude of 830.6 N. The direction of the net force is right.

The net force on C has a magnitude of 250 N. The direction of the net force is left.

Net force on A:

The direction of force on A due to the 4.00 nC and 2.50 nC charge is in the left direction.

Force F1 on A due to the charge at C.

Force F1 = kq₁q₂ / r²

F1 = (9 × 10⁹ Nm²/C²) * (4.00 × 10⁻⁹ C) * (2.50 × 10⁻⁹ C) / (0.06 m)²

F1 = 250 N

Force F2 on A due to the charge at B.

Force F2 = kq₁q₂ / r²

F2 = (9 × 10⁹ Nm²/C²) * (4.00 × 10⁻⁹ C) * (2.50 × 10⁻⁹ C) / (0.02 m)²

F2 = 562.5 N

Net force on A is

Fnet = F2 - F1

Fnet = 562.5 N - 250 N

Fnet = 312.5 N in the right direction

Net force on B:

Force F1 on B due to the charge at A.

Force F1 = kq₁q₂ / r²

F1 = (9 × 10⁹ Nm²/C²) * (2.00 × 10⁻⁹ C) * (4.00 × 10⁻⁹ C) / (0.02 m)²

F1 = 900 N

Force F2 on B due to the charge at C.

Force F2 = kq₁q₂ / r²

F2 = (9 × 10⁹ Nm²/C²) * (2.50 × 10⁻⁹ C) * (4.00 × 10⁻⁹ C) / (0.06 m)²

F2 = 69.4 N

The direction of force on B due to the 4.00 nC and 2.50 nC charge is in the right direction.

Net force on B is

Fnet = F1 - F2

Fnet = 900 N - 69.4 N

Fnet = 830.6 N in the right direction

Net force on C:

Force F1 on C due to the charge at B.

Force F1 = kq₁q₂ / r²

F1 = (9 × 10⁹ Nm²/C²) * (4.00 × 10⁻⁹ C) * (2.50 × 10⁻⁹ C) / (0.06 m)²

F1 = 250 N

The direction of force on C due to the 4.00 nC and 2.50 nC charge is in the left direction.

Net force on C is

Fnet = F1

Fnet = 250 N in the left direction

To learn more about magnitude, refer below:

https://brainly.com/question/31022175

#SPJ11

The cork from a champagne bottle slips through the hands of a water opening it, moving with an initial velocity v0​=12.8 m/s at an angle θ=78.5∘ above horizontal A diner is sitting a horizontal distance d away when this happens. Assume the cork leaves the waiter's hands at the same vertical level as the diner and that the cork falls back to this vertical level when it reaches the diner. Use a Cartesian coordenate system with the origin at the cork's instial position. 50\% Part (a) Calculate the time, td​ in seconds, for the cork to reach the diner. 4=2.56 Cerrect! ​ \$4 50\% Part (b) Reacting quickly to avoid being struck, the diner moves 2.00 m horizontally directly toward the waiter opening the champagne bottle. Detemine the horizontal distance, d in meters, between the waiter and the diner at the time the cork reaches where the diner had previously been sitting.

Answers

The horizontal distance between the diner and the waiter at the time the cork reaches where the diner had previously been sitting is (1.91d - 2) m.The time, tᵈ taken by the cork to reach the diner is (1.91d) seconds.

Initial velocity of the cork, v₀ = 12.8 m/s, Angle made by the cork with the horizontal, θ = 78.5°, Horizontal distance between the diner and the waiter, d = ?

Part (a)

The time, tᵈ taken by the cork to reach the diner is given bytᵈ = (d/v₀) cos θ

Substituting the given values, we havetᵈ = (d/12.8) cos 78.5° ⇒ tᵈ = (1.91d) seconds

Part (b)

When the cork is about to hit the diner, the diner moves 2 m towards the waiter.

Therefore, the new distance between the diner and the waiter is d' = d - 2 m

At the same time, the cork is at a horizontal distance of d metres from the waiter.

Therefore, the horizontal distance between the diner and the waiter at the time the cork reaches where the diner had previously been sitting is given by d' + (v₀ sin θ) tᵈ = d + (v₀ sin θ) tᵈ - d' = (1.91d - 2) m

Hence, the horizontal distance between the diner and the waiter at the time the cork reaches where the diner had previously been sitting is (1.91d - 2) m.

Learn more about velocity  here ;

https://brainly.com/question/30559316

#SPJ11

Approximately how many times louder is a 140-dB sound than a 90-dB sound?

The answer 100,00 is incorrect along with 10^5.

Answers

The correct answer is 32 times louder. Sound is measured in decibels which is a logarithmic scale.

On this scale, an increase of 10 dB represents a sound that is perceived to be twice as loud.

Therefore, a 140-dB sound is 10^{(140-90)/10} = 10⁵ times louder than a 90-dB sound. And since 10^5 is 100,000, we can conclude that a 140-dB sound is 100,000 times louder than a 90-dB sound.

However, the question asks for an approximation, so we can use the fact that an increase of 10 dB represents a doubling of perceived loudness. Therefore, a 140-dB sound is approximately 2^(140-90)/10 = 2^5 = 32 times louder than a 90-dB sound.

To learn more about sound in decibels: https://brainly.com/question/16672894

#SPJ11

Two charges are located along the x-axis. One has a charge of 6μC, and the second has a charge of −3.1μC. If the electrical potential energy associated with the pair of charges is −0.041 J, what is the distance between the charges? The value of the Coulomb constant is 8.98756×10
9
N⋅m
2
/C
2
and the acceleration due to gravity is 9.81 m/s
2
. Answer in units of m. 01610.0 points In Rutherford's famous scattering experiments (which led to the planetary model of the atom), alpha particles (having charges of +2e and masses of 6.64×10
−27
kg) were fired toward a gold nucleus with charge +79e. An alpha particle, initially very far from the gold nucleus, is fired at 1.67×10
7
m/s directly toward the gold nucleus. How close does the alpha particle get to the gold nucleus before turning around? Assume the gold nucleus remains stationary. The fundamental charge is 1.602×10
−19
C and the Coulomb constant is 8.98755×10
9
N⋅m
2
/C
2
. Answer in units of m.

Answers

The alpha particle gets as close as 0.118 pm to the gold nucleus before turning around.

Let the distance between the two charges be d. The electrical potential energy associated with the pair of charges can be expressed as:

U = (1/4πε) (q₁q₂ / d),

where ε is the permittivity of free space and q₁ and q₂ are the charges. So, the electrical potential energy of the pair of charges can be expressed as:

U = (1/4πε) (q₁q₂ / d).

Taking the values of the given terms and substituting, we get:

-0.041 = (1/4π(8.98756×10⁹)) [(6×10⁻⁶) (-3.1×10⁻⁶)] / d.

Therefore, d = 0.00849 m or 8.49 mm (rounded to two decimal places).

Given values for the constants and masses can be used to calculate the distance between the alpha particle and the gold nucleus as follows. Consider the electrostatic force acting between two charges:

Fe = k (q₁q₂) / r²,

where k is the Coulomb constant, q₁ and q₂ are the charges, and r is the separation distance between the charges.

If there is no net force acting on the alpha particle, then its kinetic energy will be converted to potential energy as it is pushed towards the gold nucleus. This potential energy can be calculated as follows:

U = k (q₁q₂) / r,

where U is the potential energy, k is the Coulomb constant, q₁ and q₂ are the charges, and r is the separation distance between the charges. The kinetic energy of the alpha particle is given by:

(1/2)mv²,

where m is the mass of the alpha particle and v is the initial velocity of the alpha particle.

The maximum separation distance between the alpha particle and the gold nucleus is the point at which the kinetic energy of the alpha particle is converted to potential energy, and the particle's velocity is zero. This means that the initial kinetic energy of the alpha particle is equal to the final potential energy at maximum separation. This can be expressed as:

(1/2)mv² = k (q₁q₂) / r,

where r is the maximum separation distance. Rearranging, we get:

r = k (q₁q₂) / (mv²).

Given the values for k, q₁, q₂, m, and v, we get:

r = (8.98755×10⁹) (2(1.602×10⁻¹⁹) (79(1.602×10⁻¹⁹))) / (6.64×10⁻²⁷ (1.67×10⁷)²).

Simplifying, we get:

r = 1.18×10⁻¹³ m or 0.118 pm (rounded to three decimal places).

Therefore, the alpha particle gets as close as 0.118 pm to the gold nucleus before turning around.

To learn more about particle, refer below:

https://brainly.com/question/13874021

#SPJ11

6. Calculate the potential temperature of air that at pressure 50mb has temperature T=250 K

Answers

Calculate the potential temperature of air at 50mb and 250 K using the formula: potential temperature = temperature * (Reference Pressure / Current Pressure)^(R/Cp).the potential temperature of the air at a pressure of 50mb and a temperature of 250 K is approximately 369.25 K.

To calculate the potential temperature of air at a pressure of 50mb and a temperature of 250 K, you can use the formula for potential temperature:

Potential temperature = Temperature * (Reference Pressure / Current Pressure)^(R/Cp)

In this case, the reference pressure is typically taken as 1000mb, the gas constant for dry air (R) is approximately 287 J/(kg·K), and the specific heat at constant pressure (Cp) is approximately 1005 J/(kg·K).

Plugging in the values, we get:

Potential temperature = 250 K * (1000 mb / 50 mb)^(287/1005)

Simplifying the calculation:

Potential temperature = 250 K * 20^(0.2856)

Using a calculator, we can find that 20^(0.2856) is approximately 1.477.

So, the potential temperature of the air is:

Potential temperature = 250 K * 1.477

Calculating this, we find that the potential temperature of the air is approximately 369.25 K.

Therefore, the potential temperature of the air at a pressure of 50mb and a temperature of 250 K is approximately 369.25 K.

To know more about potential temperature Visit:

https://brainly.com/question/34014904

#SPJ11

In a vacuum, two particles have charges of q 1and q 2 , where q 1 =+3.6μC. They are separated by a distance of 0.24 m, and particle 1 experiences an attractive force of 3.5 N. What is the value of q 2, with its sign? Number Units

Answers

The value of q2 is approximately -2.38 μC. The negative sign indicates that q2 has an opposite charge to q1. This is determined by using Coulomb's law, considering the given attractive force of 3.5 N between the particles with a separation distance of 0.24 m.

To find the value of q2, we can use Coulomb's law, which states that the force between two charged particles is given by:

F = (k * |q1 * q2|) / r^2

Where F is the force, k is the electrostatic constant (k = 8.99 x 10^9 N m^2/C^2), q1 and q2 are the charges of the particles, and r is the distance between them.

Given:

q1 = +3.6 μC = 3.6 x 10^-6 C

F = 3.5 N

r = 0.24 m

Rearranging the equation, we can solve for q2:

q2 = (F * r^2) / (k * |q1|)

Plugging in the values:

q2 = (3.5 N * (0.24 m)^2) / (8.99 x 10^9 N m^2/C^2 * |3.6 x 10^-6 C|)

After performing the calculation, we find that the value of q2 is approximately -2.38 μC. The negative sign indicates an opposite charge to q1.

Learn more about Coulomb's law here

https://brainly.com/question/29124480

#SPJ11

Two point charges, +3.00μC and −8.50μC, are separated by 3.70 m. What is the electric potential midway between them?

Answers

The electric potential midway between two point charges having magnitudes +3.00μC and −8.50μC, separated by 3.70 m, is -1.71 * 10^6 V.

The electric potential is a scalar quantity that represents the electric potential energy per unit charge at any given point in space that is near a source charge. The electric potential midway between two point charges having magnitudes +3.00μC and −8.50μC, separated by 3.70 m, is as follows: Given data: Charge q1 = +3.00μCCharge q2 = −8.50μC.Distance between the charges r = 3.70 m. The electric potential V at a distance r from a point charge is given by V = kq/r, where k is the Coulomb constant, which is equal to 9 × 10^9 Nm^2/C^2, q is the point charge, and r is the distance between the point charge and the point where we want to calculate the electric potential. Hence, the electric potential at a distance r from two point charges is given by: V = k * (q1 / r) + k * (q2 / (d - r))Where d is the distance between two charges. Since the question is asking about the electric potential midway between two point charges, r will be equal to half the distance between the charges i.e. r = d / 2.

Hence, V = k * (q1 / r) + k * (q2 / (d - r))= (9 × 10^9 Nm^2/C^2) × [(+3.00μC) / (3.70 / 2)] + (9 × 10^9 Nm^2/C^2) × [(-8.50μC) / (3.70 / 2)]V = (9 × 10^9 Nm^2/C^2) × [0.8108 - 1.9041]V = -1.71 * 10^6 V.Therefore, the electric potential midway between two point charges having magnitudes +3.00μC and −8.50μC, separated by 3.70 m, is -1.71 * 10^6 V.

Learn more about the Electric potential:

https://brainly.com/question/26978411

#SPJ11

Water flows through a commercial steel pipe with a diameter of 50 cm. If the volumetric flow rate is 0.45 m3.s-1, determine the average velocity in m/s

Answers

Therefore, the average velocity of the water flowing through the pipe is 1.81 m/s. The diameter of the commercial steel pipe, D = 50 cm .

= 0.5 m

The volumetric flow rate, Q = 0.45 m³/s

Formula used to find the average velocity in a pipe is

:Average velocity, v = Q / (πD² / 4)

Substitute the values in the above formula, we get

Average velocity, v = Q / (πD² / 4)

v = (0.45) / (π(0.5)² / 4)

we getv = 0.45 * 4 / (π * 0.5²)v = 0.45 * 4 / (π * 0.25)

v = 1.81 m/s

Therefore, the average velocity of the water flowing through the pipe is 1.81 m/s

Water flows through a commercial steel pipe with a diameter of 50 cm. The volumetric flow rate is 0.45 m3/s. The formula to find the average velocity in a pipe is

v = Q / (πD² / 4).

We have to find the average velocity in m/s.To find the average velocity we substitute the given values in the formula, so the equation becomes

v = Q / (πD² / 4).

v = (0.45) / (π(0.5)² / 4)

By simplifying the equation, v = 0.45 * 4 / (π * 0.5²) and then

v = 0.45 * 4 / (π * 0.25)

To know more about water visit:

https://brainly.com/question/12977853

#SPJ11

A solenoid with 445 turns has a length of 7.50 cm and a cross-sectional area of 2.70×10 ^{−9} m ^{2}. Find the solenoid's inductance and the average emf around the solenoid if the current changes from +2.50 A to −2.50 A in 7.83×10 ^{−3}s.
(a) the solenoid's inductance (in H )
(b) the average emf around the solenoid (in V)

Answers

the average emf around the solenoid is 0.68 V.

(a) The solenoid's inductanceThe formula for inductance is given byL = μ₀n²A / l

Where:L is the inductance of the solenoid

μ₀ is the permeability constant of free space =[tex]4π x 10^-7TmA^-2n[/tex] is the number of turnsA is the cross-sectional area of the solenoid

l is the length of the solenoidSubstitute the given values to get:L = [tex]4π x 10^-7 x (445)² x (2.70×10 ^{−9}) / (7.50 x 10^-2)L = 1.06 x 10^-3 H[/tex]

Therefore, the solenoid's inductance is 1.06 x 10^-3 H.(b) The average emf around the solenoid

The formula for average emf is given byemf = L Δi / Δt

Where:Δi = change in current = 2.50 A + 2.50 A = 5.00 AΔt = 7.83×[tex]10 ^{−3}s[/tex]

Substitute the given values to get:emf = [tex](1.06 x 10^-3) x 5.00 / (7.83×10 ^{−3})emf = 0.68 V[/tex]

To know more about solenoid visit:

brainly.com/question/32195936

#SPJ11

A chipmunk scampers about collecting in its checks safflower seeds that the birds dropped from the feeder hanging overhead. Initially, the little creature is at position vector r
1x

=3.49 m and r
1y

=−2.21 m. After filling up, it runs to the hole at position vector r
2x

=−1.23 m and r
2y

=4.27 m that leads to its underground nest. Find component Δr
x

of the chipmunk's displacement vector for this expedition. Δr
x

= Find component Δr
y

of the chipmunk's displacement vector for this expedition. Δr
y

= m

Answers

The component Δrₓ of the chipmunk's displacement vector is approximately -4.72 m, and the component Δrᵧ is approximately 6.48 m.

To find the components Δrₓ and Δrᵧ of the chipmunk's displacement vector, we need to calculate the change in position along the x-axis and y-axis, respectively.

The change in position (Δr) can be calculated by subtracting the initial position vector (r₁) from the final position vector (r₂):

Δr = r₂ - r₁

Given:

Initial position vector r₁ = (3.49 m, -2.21 m)

Final position vector r₂ = (-1.23 m, 4.27 m)

Δrₓ = r₂ₓ - r₁ₓ

Δrᵧ = r₂ᵧ - r₁ᵧ

Substituting the values:

Δrₓ = (-1.23 m) - (3.49 m)

Δrᵧ = (4.27 m) - (-2.21 m)

Calculating:

Δrₓ = -1.23 m - 3.49 m

Δrₓ = -4.72 m

Δrᵧ = 4.27 m + 2.21 m

Δrᵧ = 6.48 m

Therefore, the component Δrₓ of the chipmunk's displacement vector is approximately -4.72 m, and the component Δrᵧ is approximately 6.48 m.

Here you can learn more about  displacement

https://brainly.com/question/29769926#

#SPJ11  

A 2187 kg truck collides with a 564 kg car. Ignoring the friction between the road
and the tires


a. (0.5 pts.) Draw a free body diagram for the truck
b. (0.5 pts.) Draw a free body diagram for the car
c. (1 pt) If the magnitude of the truck’s acceleration is 10 m/s2, find the
magnitude of the car’s acceleration.

Answers

The truck has an acceleration of 10 m/s², the car's acceleration is 38.67 m/s². This is determined by applying Newton's second law using the masses of the truck (2187 kg) and the car (564 kg).

a. Free Body Diagram for the Truck

The free body diagram for the truck will include the following forces

Weight (mg) acting vertically downward

Normal force (N) exerted by the ground in the upward direction

Applied force (F) in the direction of acceleration

Frictional force (f) opposing the motion (assumed to be negligible in this case)

b. Free Body Diagram for the Car

The free body diagram for the car will include the following forces:

Weight (mg) acting vertically downward

Normal force (N) exerted by the ground in the upward direction

Frictional force (f) opposing the motion (assumed to be negligible in this case)

c. Magnitude of Car's Acceleration

Using Newton's second law of motion (F = ma), we can determine the magnitude of the car's acceleration

For the truck:[tex]F_{truck} = m_{truck} * a_{truck[/tex]

For the car: [tex]F_{car} = m_{car} * a_{car}[/tex]

Given that the magnitude of the truck's acceleration is 10 m/s², we can calculate the magnitude of the car's acceleration by rearranging the equation as follows:

[tex]a_{car} = F_{car} / m_{car} = (F_{truck} / m_{truck}) * (m_{truck} / m_{car}) =[/tex][tex]a_{truck }* (m_{truck} / m_{car})[/tex]

Substituting the given values

[tex]a_{car}[/tex] = 10 m/s² * (2187 kg / 564 kg) ≈ 38.81 m/s²

The magnitude of the car's acceleration is 38.81 m/s².

To know more about car's acceleration  refer here

https://brainly.com/question/28935879#

#SPJ11

A 15000.lb turbine is created at sea level where g=9.81 m/s
2
. It is transported to Denver, Colorado where the acceleration due to gravity is now 9.78 m/s
2
. How much does it weigh in lbs now?

Answers

The answer is that the weight of the turbine at Denver, Colorado is approximately 14930.06 lb. The weight of the turbine at sea level (w1) = 15000 lb; Acceleration due to gravity at sea level (g1) = 9.81 m/s²; Acceleration due to gravity at Denver, Colorado (g2) = 9.78 m/s²

The weight of an object is equal to the product of mass and acceleration due to gravity. The formula to calculate the weight of an object is as follows: w = mg; Where, w = Weight of the object; m = mass of the object; g = acceleration due to gravity

Now, to calculate the weight of the turbine at Denver, we can use the formula as follows: w2 = m × g2; where w2 is the weight of the turbine at Denver. We know that the mass of the turbine does not change. Therefore, the mass of the turbine at sea level (m1) = the mass of the turbine at Denver (m2).

Equate the two formulas to find the weight of the turbine:

w1 = m1 × g1w2 = m2 × g2

Since m1 = m2, we can write:w2/w1 = g2/g1⇒ w2 = (w1 × g2)/g1

Putting the values in the above formula, we get:w2 = (15000 × 9.78)/9.81

Therefore, the weight of the turbine at Denver, Colorado is approximately 14930.06 lb.

Learn more about acceleration due to gravity here: https://brainly.com/question/88039

#SPJ11

Four point charges q are placed at the corners of a square of side a. - Find the magnitude of the total Coulomb force F on each of the charges. kq ^{2} √2a ^{2}
ka ^{2} (1/2+ √2 1/a ^{2} ka ^{2} (√3 1/a ^{2} kq ^{2} /(2a ^{2} ) √3

Answers

Given, Four point charges q are placed at the corners of a square of side a. We have to find the magnitude of the total Coulomb force F on each of the charges.

Solution: The force on any charge is given by Coulomb's law as: F = kqq0 / r², where q and q0 are the magnitudes of the two charges, k is Coulomb's constant, and r is the distance between the two charges.

The figure below shows the force on charge q1 due to the other three charges q2, q3, and q4.As the square is symmetric about its center, the net force on charge q1 due to charges q2 and q4 is along the diagonal of the square. Also, the magnitudes of the force on charge q1 due to charges q2 and q4 are the same, and are given by:

F1 = kq²/ (2a²) × (1/2 + 1/√2)

= kq² (1 + √2)/ (4a²)

Similarly, the magnitudes of the force on charge q1 due to charges q3 and q2 are also the same, and are given by:

F2 = kq²/ (2a²) × (√3/2)

= kq²√3/ (4a²)

Therefore, the total force on charge q1 is:

F total = √[F1² + (F2 + F2)²]

= kq²/ (2a²) × √3

We know that there are four charges, so the magnitude of the force on each charge is:

F = Ftotal/4

= kq²/ (8a²) × √3

The required magnitude of the total Coulomb force F on each of the charges is kq²/ (8a²) × √3, which is the same for each charge.

To know more about corners visit:

https://brainly.com/question/30175548

#SPJ11

am pushing a 20 kg box up a 3m ramp. If the box starts at rest and takes 2.1s to reach the top of the ramp, what is the coefficient of friction if the ramp has an angle of 28 degrees?

Answers

The coefficient of friction between the box and the ramp is approximately 0.531.

To find the coefficient of friction, we need to consider the forces acting on the box as it moves up the ramp. Let's break down the forces involved:

Gravitational force (weight):

The weight of the box can be calculated using the formula: weight = mass * gravity.

Given the mass of the box is 20 kg, and the acceleration due to gravity is approximately 9.8 m/s², the weight of the box is: weight = 20 kg * 9.8 m/s² = 196 N.

Normal force:

The normal force is the perpendicular force exerted by the ramp on the box, which counteracts the weight of the box. The normal force can be calculated using: normal force = weight * cos(angle).

Given the angle of the ramp is 28 degrees, the normal force is: normal force = 196 N * cos(28°).

Frictional force:

The frictional force can be calculated using the equation: frictional force = coefficient of friction * normal force.

When the box is on the verge of reaching the top of the ramp, the frictional force will be equal to the force component along the ramp, which is the weight of the box multiplied by the sine of the angle. So we have: frictional force = weight * sin(angle).

Since the box starts from rest and reaches the top of the ramp in 2.1 seconds, we can assume uniform acceleration during this time. We can use the following kinematic equation to relate the forces and motion:

force - frictional force = mass * acceleration.

Now let's plug in the values and solve for the coefficient of friction:

force - frictional force = mass * acceleration

weight * sin(angle) - coefficient of friction * normal force = mass * acceleration

weight * sin(angle) - coefficient of friction * weight * cos(angle) = mass * acceleration

Substituting the known values:

196 N * sin(28°) - coefficient of friction * 196 N * cos(28°) = 20 kg * acceleration

Now we can solve for the coefficient of friction:

coefficient of friction = [196 N * sin(28°)] / [196 N * cos(28°)]

coefficient of friction = tan(28°)

Using a calculator, we find that the coefficient of friction is approximately 0.531.

To know more about coefficient of friction

brainly.com/question/29281540

#SPJ11

Given a 2 kW, 4 pole DC generator with a lap wound armature having 132 slots with each slot having 4 conductors, what will the terminal voltage be when the pole flux is 0.05 Wb and the rotor speed is 1750 rpm? Give the number value only, no units.

Answers

The armature speed is given in rpm, so we need to convert it to revolutions per second by dividing it by 60. The result is the terminal voltage of the generator, the terminal voltage of the given generator will be approximately 1.458 (no units).

To calculate the terminal voltage of the given 2 kW, 4 pole DC generator, we can use the formula:
Terminal Voltage = (Pole Flux × Armature Speed × Number of Conductors per Slot × Number of Parallel Paths)/(60 × Number of Poles)
Given:
[tex]Pole Flux = 0.05 Wb[/tex]
[tex]Armature Speed = 1750 rpm[/tex]
[tex]Number of Conductors per Slot = 4[/tex]
[tex]Number of Parallel Paths = 1 (since it's a lap wound armature)[/tex]
[tex]Number of Poles = 4[/tex]

Plugging in the values into the formula:
[tex]Terminal Voltage = (0.05 × 1750 × 4 × 1)/(60 × 4)[/tex]
Simplifying:
[tex]Terminal Voltage = 0.05 × 1750 × 4 × 1/240[/tex]
[tex]Terminal Voltage = 350/240[/tex]
[tex]Terminal Voltage = 1.458[/tex]

To know more about DC generator visit:

https://brainly.com/question/33945869

#SPJ11

Suppose in the drawing that I
1

=I
2

=33.6 A and that the separation between the wires is 0.0226 m. By applying an external magnetic field (created by a source other than the wires) it is possible to cancel the mutual repulsion of the wires. This external field must point along the vertical direction. (a) Does the external field point up or down? (b) What is the magnitude of the external field?

Answers

The external magnetic field points downwards and its magnitude is 150.

a) The external field points downwards.

b) The magnitude of the external field is 150.

The external field points up or down and what is the magnitude of the external field, the following formulas are used respectively.

The mutual repulsion force between the wires is given by the formula;

F=μ0I1I2/(2πd)

where F is the force, I1 and I2 are the currents, d is the separation distance and μ0 is the permeability of free space which is 4π×10−7 Tm/I

Calculate the mutual repulsion force:F = (4π × 10⁻⁷ Tm/IC) (33.6 A) (33.6 A) / (2π) (0.0226 m)F = 0.118 N

The direction of the force between the two wires is opposite for each wire.

Since the two wires carry current in the same direction, the force between the wires is repulsive.

The external magnetic field must be in the opposite direction and its magnitude must be given by;B = F / (I L)

where B is the magnitude of the external magnetic field, I is the current in each wire, L is the length of the wire and F is the mutual repulsion force calculated above.

Substitute the values and solve:B = 0.118 N / (33.6 A) (1 m)B = 0.00351 T = 3.51 mT

Convert T to Gauss:1 T = 10,000 Gauss

B = 3.51 mT = 35.1 Gauss

The external field must be pointed downwards.

Therefore, the external magnetic field points downwards and its magnitude is 150.

Learn more about magnetic field with the given link

https://brainly.com/question/14997726

#SPJ11

Despite having almost unlimited gian, what is the limiting factor of how high an op-amp's voltage can actually go?

Answers

The limiting factor of how high an op-amp's voltage can actually go is determined by the power supply voltage. It is important to stay within the specified voltage range to ensure accurate amplification and avoid damage to the op-amp.

The limiting factor of how high an op-amp's voltage can actually go is determined by the power supply voltage.
Op-amps, or operational amplifiers, are electronic devices used in circuits to amplify signals. They have a specified voltage range within which they can operate effectively.
The power supply voltage provides the maximum voltage that the op-amp can handle. If the input signal exceeds this voltage, the op-amp will not be able to accurately amplify the signal and may even be damaged.
For example, let's say we have an op-amp with a power supply voltage of ±15 volts. This means that the maximum voltage the op-amp can handle is 15 volts in the positive direction and 15 volts in the negative direction. If the input signal exceeds these voltage limits, the op-amp will not be able to accurately amplify the signal.
In addition to the power supply voltage, other factors such as the op-amp's internal circuitry and the quality of the components used can also affect its performance and maximum voltage handling capability. However, the power supply voltage is the primary limiting factor in determining how high an op-amp's voltage can actually go.
To know more about op-amp's voltage, visit:

https://brainly.com/question/28065774

#SPJ11

A canoe has a velocity of 0.430 m/s southeast relative to the earth. The canoe is on a river that is flowing at 0.760 m/s east relative to the earth. (Figure 1) Find the magnitude of the velocity
v

CR

of the canoe relative to the river. Express your answer in meters per second. 2 Incorrect; Try Again; 3 attempts remaining

Answers

The magnitude of the velocity vCR of the canoe relative to the river is approximately 0.665 m/s.

To find the magnitude of the velocity vCR of the canoe relative to the river, we can use vector addition.

The velocity of the canoe relative to the earth is given as 0.430 m/s southeast, and the velocity of the river relative to the earth is given as 0.760 m/s east.

To find the velocity of the canoe relative to the river, we subtract the velocity of the river from the velocity of the canoe:

vCR = vCE - vRE

where vCE is the velocity of the canoe relative to the earth and vRE is the velocity of the river relative to the earth.

Given:

vCE = 0.430 m/s southeast

vRE = 0.760 m/s east

To perform vector subtraction, we need to resolve the velocities into their respective components. Let's consider the x-axis as east and the y-axis as north.

The velocity of the canoe relative to the earth (vCE) has two components:

vCE,x = 0.430 m/s * cos(45°)

vCE,y = 0.430 m/s * sin(45°)

The velocity of the river relative to the earth (vRE) only has an eastward component:

vRE,x = 0.760 m/s

Now, we can subtract the components to find the velocity of the canoe relative to the river:

vCR,x = vCE,x - vRE,x

vCR,y = vCE,y

To find the magnitude of vCR, we use the Pythagorean theorem:

|vCR| = sqrt(vCR,x^2 + vCR,y^2)

Substituting the given values:

vCR,x = 0.430 m/s * cos(45°) - 0.760 m/s

vCR,y = 0.430 m/s * sin(45°)

|vCR| = sqrt((0.430 m/s * cos(45°) - 0.760 m/s)^2 + (0.430 m/s * sin(45°))^2)

|vCR| ≈ 0.665 m/s

Therefore, the magnitude of the velocity vCR of the canoe relative to the river is approximately 0.665 m/s.

To know more about velocity, visit:

https://brainly.com/question/30559316

#SPJ11

A 580−kg car is traveling with a speed of 25.0 m/s. What is the magnitude of the horizontal net force that is required to bring the car to a halt in 50.0 m ?

Answers

The magnitude of the horizontal net force required to bring the car to a halt is 3625 Newtons. by using the equations of motion.

Let's see the calculation

The initial velocity of the car, u, is 25.0 m/s, and the final velocity, v, is 0 m/s since the car comes to a halt.

The displacement, s, is 50.0 m.

We can use the equation:

v^2 = u^2 + 2as

Where:

v = final velocity

u = initial velocity

a = acceleration

s = displacement

Rearranging the equation, we get:

a = (v^2 - u^2) / (2s)

Substituting the given values, we have:

a = (0^2 - 25.0^2) / (2 * 50.0)

a = (-625) / 100

a = -6.25 m/s^2

The negative sign indicates that the acceleration is in the opposite direction of the initial velocity, which is necessary to bring the car to a halt.

Now, we can calculate the magnitude of the net force using Newton's second law:

F = m * a

Where:

F = net force

m = mass

a = acceleration

Substituting the given values, we have:

F = 580 kg * (-6.25 m/s^2)

F = -3625 N

Therefore, the magnitude of the horizontal net force required to bring the car to a halt is 3625 Newtons.

To know more about equation of motions visit:

https://brainly.com/question/29278163

#SPJ11

The driver of a car slams on the brakes when he sees a tree blocking the road. The car slows uniformly with acceleration of −5.35 m/s
2
for 4.15 s, making straight skid marks 65.0 m long, all the way to the tree. With what speed (in m/s ) does the car then strike the tree? m/5 b) What If? If the car has the same initial velocity, and if the driver slams on the brakes at the same distance from the tree, then what would the acceleration need to be (in m/s
2
) so that the car narrowly avoids a collision? m/s
2

Answers

a) The speed at which the car strikes the tree is 0 m/s.

b) The acceleration needed for the car to narrowly avoid a collision is 0 m/s², indicating that the car would need to maintain a constant velocity (zero acceleration) to come to a stop just before reaching the tree.

(a) To find the speed at which the car strikes the tree, we can use the following equation:

[tex]v^2 = u^2 + 2as[/tex]

Where:

v = final velocity (unknown)

u = initial velocity (assumed to be 0 m/s as the car starts from rest)

a = acceleration (-5.35 m/s²)

s = distance (65.0 m)

Plugging in the values, we can solve for v:

[tex]v^2 = 0^2 + 2(-5.35)(65.0)[/tex]

[tex]v^2 = 0 + (-686.75)[/tex]

[tex]v^2 = -686.75[/tex]

v = √(-686.75)

Since the velocity cannot be negative in this context, we know that the car stops before it reaches the tree. Therefore, the speed at which the car strikes the tree is 0 m/s.

(b) If the car were to narrowly avoid a collision, it means that it comes to a stop just before reaching the tree. In this case, the final velocity (v) would be 0 m/s.

Using the same equation as above, we can solve for the required acceleration (a) when the initial velocity (u) and final velocity (v) are known:

[tex]v^2 = u^2 + 2as[/tex]

[tex]0 = u^2 + 2a(65.0)[/tex]

Solving for a:

[tex]2a(65.0) = -u^2[/tex]

[tex]a = \frac{(-u^2)}{(2(65.0))}[/tex]

Substituting the given initial velocity (u = 0 m/s), we have:

[tex]a = \frac{(-0^2)}{(2(65.0))}[/tex]

a = 0 m/s^2

Therefore, the acceleration needed for the car to narrowly avoid a collision is 0 m/s², indicating that the car would need to maintain a constant velocity (zero acceleration) to come to a stop just before reaching the tree.

To know more about acceleration

brainly.com/question/12550364

#SPJ11

The actual question is:

a) The driver of a car slams on the brakes when he sees a tree blocking the road. The car slows uniformly with acceleration of −5.35 m/s² for 4.15 s, making straight skid marks 65.0 m long, all the way to the tree. With what speed (in m/s ) does the car then strike the tree?

b) What If? If the car has the same initial velocity, and if the driver slams on the brakes at the same distance from the tree, then what would the acceleration need to be (in m/s²) so that the car narrowly avoids a collision? m/s²

Three people pull simultaneously on a stubborn donkey. Jack pulls directly ahead of the donkey with a force of 73.7 N, Jill pulls with 95.3 N in a direction 45

to the left, and Jane pulls in a direction 45

to the right with 103 N. (Since the donkey is involved with such uncoordinated people, who can blame it for being stubborn?) Determine the magnitude F of the net force the people exert on the donkey. F= What is the direction θ of the net force? Let 0

define straight ahead, with positive angles to the left and negative angles to the right. Express θ as an angle with a magnitude between 0

θ= and 90

Answers

The magnitude is 143.9 N and the direction  θ of the net force is 63.4∘.

We can determine the net force acting on the donkey by using the law of vector addition. The vector components of the force of Jill and Jane are:

fx = 95.3cos(45∘) - 103cos(45∘) = -3.04 N

fy = 95.3sin(45∘) + 103sin(45∘) = 141.5 N

The net force can then be obtained as:

F = sqrt[(73.7 N + (-3.04 N))^2 + (0 + 141.5 N)^2]

F = 143.9 N

The magnitude of the net force is 143.9 N.

The angle θ that the net force makes with the positive x-axis is given by:

θ = tan⁻¹(141.5 N / 70.66 N)

θ = 63.4∘

The direction of the net force is to the left with a magnitude between 0∘ and 90∘.

Therefore, F = 143.9 N and θ = 63.4∘.

To learn more about magnitude, refer below:

https://brainly.com/question/31022175

#SPJ11

Uncertainty Principle. Estimate the minimum uncertainty in the position of:

a) an electron in a hydrogen atom with the energy that is associated with the speed

= . ∙ ^-/

b) a mobile E.coli cell of mass . ∙ ^- that is swimming in a liquid with the same speed of = . ∙ ^-/.

Answers

A. the minimum uncertainty in the position of an electron in a hydrogen atom with the given speed is 2.52 x 10⁻¹⁰ m.

B. the minimum uncertainty in the position of a mobile E.coli cell with the given speed is 4.92 x 10⁻⁹ m.

The Uncertainty Principle states that it is impossible to measure the exact position and momentum of a particle simultaneously. Therefore, there is always an inherent uncertainty in the measurements that we take.

Let's calculate the minimum uncertainty in the position of an electron in a hydrogen atom and a mobile E.coli cell.

a) The energy associated with the speed of an electron in a hydrogen atom is given by E = (1/2)mv², where m is the mass of the electron and v is its velocity. The uncertainty principle is ΔxΔp ≥ h/4π, where Δx is the uncertainty in position, Δp is the uncertainty in momentum, and h is Planck's constant.

Since we are looking for the minimum uncertainty in position, we can set Δp equal to the uncertainty in momentum associated with the speed of the electron.

Δp = mv = (9.11 x 10⁻³¹ kg)(2.19 x 10⁶ m/s)

Δp = 1.99 x 10⁻²⁴ kg·m/s

Now we can solve for Δx.

Δx ≥ h/4π

Δx ≥ (6.63 x 10⁻³⁴ J·s)/(4π)(1.99 x 10⁻²⁴ kg·m/s)

Δx ≥ 2.52 x 10⁻¹⁰ m

Therefore, the minimum uncertainty in the position of an electron in a hydrogen atom with the given speed is 2.52 x 10⁻¹⁰ m.

b) Using the same formula as before,

Δp = mv = (5 x 10⁻¹⁶ kg)(2.19 x 10⁻⁶ m/s)

Δp = 1.095 x 10⁻²⁰ kg·m/s

Δx ≥ h/4π

Δx ≥ (6.63 x 10⁻³⁴ J·s)/(4π)(1.095 x 10⁻²⁰ kg·m/s)

Δx ≥ 4.92 x 10⁻⁹ m

Therefore, the minimum uncertainty in the position of a mobile E.coli cell with the given speed is 4.92 x 10⁻⁹ m.

To learn more about uncertainty, refer below:

https://brainly.com/question/33389550

#SPJ11

A vehicle falls off a cliff, initially with a pure horizontal velocity of 13 m/s. If it took it 8 s to hit the ground, how high is the cliff? h= m.

Answers

The height of the cliff can be determined using the equation of motion for vertical motion. By considering the time of fall, the initial vertical velocity, and the acceleration due to gravity, the height is calculated to be 313.6 meters.

To determine the height of the cliff, we can use the equation of motion for vertical motion: h = v₀t + (1/2)gt², where h represents the height, v₀ is the initial vertical velocity, t is the time, and g is the acceleration due to gravity. In this case, the vehicle falls vertically, so its initial vertical velocity is 0 m/s. The time taken to hit the ground is given as 8 seconds. The acceleration due to gravity is approximately 9.8 m/s². Plugging these values into the equation, we get: h = 0(8) + (1/2)(9.8)(8²) = 0 + 0.5(9.8)(64) = 0 + 313.6 = 313.6 meters. Therefore, the height of the cliff is approximately 313.6 meters.

Learn more about acceleration here:

https://brainly.com/question/30499732

#SPJ11

1. What is the kinetic energy of $150 \mathrm{~kg}$ object that is moving at $7 \mathrm{~m} / \mathrm{s}$ ?
2. What is velocity of $60 \mathrm{~kg}$ object if its kinetic energy is $1080 \mathrm{~J}$ ?
3. If a $10 \mathrm{~kg}$ object is raised to a place of $3.0 \mathrm{~m}$ high, what is gravitational potential energy of the object?
4. How high must you lift a $5.25 \mathrm{~kg}$ object if the gravitational potential energy is increased by $729.56 \mathrm{~J}$ ?

Answers

1)the kinetic energy of 150 kg object that is moving at 7 m/s is 3675 J.

2)velocity of 60 kg object if its kinetic energy is 1080 J  will be  6 m/s.

3)the gravitational potential energy of a 10 kg object that is raised to a place of 3.0 m high is 294 J.

4) you must lift the 5.25 kg object to a height of 14.04 m if the gravitational potential energy is increased by 729.56 J

1. An item weighing 150 kg and travelling at 7 m/s has kinetic energy.

The equation for kinetic energy is KE= 1/2mv2, where m stands for mass and v for velocity.

When the supplied values are substituted into the formula, we obtain KE = 1/2mv2 = 1/2(150 kg)(7 m/s)² = 3675 J

Therefore, the 150 kilogram object's kinetic energy at 7 m/s equals 3675 J.

2. The speed of a 60 kilogram object with a 1080 J kinetic energy

Kinetic energy is defined as KE= 1/2mv2.

Inputting the values provided yields:

KE = 1/2mv2

1080J = 1/2(60 kg)v2

v2 = (1080 J x 2)/60 kg = 36 m²/s²

Consequently, v = (36 m²/s²) = 6 m/s.

3. A 10 kilogram item is elevated to a height of 3.0 m, and its gravitational potential energy

PE = mgh, where m denotes mass, g denotes gravitational acceleration, and h denotes height, is the formula for gravitational potential energy.

With the above numbers substituted, we obtain PE = mgh = (10 kg)(9.8 m/s²)(3.0 m) = 294 J.

Therefore, a 10 kilogram object elevated to a height of 3.0 m has a 294 J gravitational potential energy.

4. The height to which a 5.25 kg item must be lifted in the event that the gravitational potential energy is raised by 729.56 J

PE = mgh is the equation for gravitational potential energy.

With the provided numbers substituted, we obtain PE = mgh 729.56 J = (5.25 kg)(9.8 m/s²)

h ⇒ h = 14.04 m

Therefore, if the gravitational potential energy is raised by 729.56 J, you must lift the 5.25 kg item to a height of 14.04 m.

Learn more about kinetic energy at:

https://brainly.com/question/16341481

#SPJ11

\& kcal (b) How long (in s) does this take if the rate of heat transfer is 600 W(1 watt =1 joule/second (1 W=1 J/s)) ? s

Answers

It takes 8368.33 seconds (s) to transfer 1200 kcal of heat with a rate of heat transfer of 600 W.

Calculate the time it takes to transfer 1200 kcal of heat with a rate of heat transfer of 600 W, we need to convert kcal to joules and then use the formula:

Time = Heat / Rate of Heat Transfer

Rate of heat transfer = 600 W

Heat = 1200 kcal

Convert kcal to joules:

1 kcal = 4184 J

So, 1200 kcal = 1200 * 4184 J ≈ 5.021 * 10^6 J

We can calculate the time:

Time = Heat / Rate of Heat Transfer

Time = (5.021 * [tex]10^6[/tex] J) / 600 W

Time ≈ 8368.33 s

The time it takes to transfer 1200 kcal of heat with a rate of 600 W, we convert kcal to joules (1200 kcal ≈ 5.021 * [tex]10^6[/tex] J).

Then, we divide the heat by the rate of heat transfer (5.021 * [tex]10^6[/tex] J / 600 W) to get the time in seconds.

The calculation gives us 8368.33 seconds. This means that it takes around 8368.33 seconds for the heat transfer to occur at a rate of 600 W.

To know more about heat transfer refer here

https://brainly.com/question/13433948#

#SPJ11

A woman starts to swim directly across a 6.8−k k-wide twee, Her speed with respect to the water is 2.1 m/s. The river current camies the woman downstrenn at a spees of 0.91 mis. taj How much time does it take her to cross the river? 34 (b) How far downstieam will the river carry her by the time the reaches the other side of the river?

Answers

we can infer that the woman wants to swim across the river of 6.8 km wide and her speed with respect to the water is 2.1 m/s.

The river current carries her downstreem at a speed of 0.91 m/s.

How much time does it take her to cross the river.

To find the time it will take her to cross the river, we can use the following formula:

[tex]$$time = \frac{distance}{speed}$$[/tex]

Since we want to find the time, then we rearrange the formula as follows:

[tex]$$time = \frac{distance}{speed} = \frac{6.8 km}{2.1 m/s} = 3238.1 s$$[/tex]

it takes her approximately 3238.1 seconds to cross the river.

How far downstream will the river carry her by the time she reaches the other side of the river.

To determine how far downstream the river will carry her, we can use the following formula:

[tex]$$distance = speed * time$$[/tex]

where speed is the speed of the river current and time is the time it took her to cross the river.

From the above, we know that the speed of the river current is 0.91 m/s, and the time it takes her to cross the river is 3238.1 s.

we can find the distance the river carried her as follows:

[tex]$$distance = speed * time = 0.91 m/s * 3238.1 s = 2944.7 m$$[/tex]

the river will carry her 2944.7 m downstream by the time she reaches the other side of the river.

To know more about speed visit:

https://brainly.com/question/6280317

#SPJ11

what is the maximum allowable length for float glass jalousies

Answers

The maximum allowable length for float glass jalousies is 150 cm.

What is Float Glass?

Float glass refers to a type of glass that is made by floating molten glass on a bed of molten metal. Float glass is a popular type of glass because it is both strong and durable.

Float glass is often used in windows, mirrors, and other applications where high-quality glass is required.

What is a Jalousie?

A jalousie is a type of window that consists of a series of parallel glass panes that are set in a frame. Jalousies are typically designed to allow air to flow through them, which makes them ideal for use in hot climates where ventilation is important.

What is the maximum allowable length for float glass jalousies?

The maximum allowable length for float glass jalousies is 150 cm. This means that any jalousies that are made from float glass cannot exceed this length. This limit is in place to ensure that the glass is strong enough to support itself and to prevent it from breaking under its own weight.

learn more about  float glass on

https://brainly.com/question/29918130

#SPJ11

An object moves along the x axis according to the equation x = 3.65t2 − 2.00t + 3.00, where x is in meters and t is in seconds. Determine the average speed between t = 3.20 s and t = 4.40 s

Answers

The average speed between t = 3.20 s and

t = 4.40 s is approximately 36.16 meters per second.

To determine the average speed between t = 3.20 s and t = 4.40 s, we need to calculate the total distance traveled during that time interval and then divide it by the time elapsed.

Given the equation x = 3.65t^2 - 2.00t + 3.00, we can find the object's position at t = 3.20 s and t = 4.40 s by substituting these values into the equation:

At t = 3.20 s:

x(3.20) = 3.65(3.20)^2 - 2.00(3.20) + 3.00 = 36.864 m

At t = 4.40 s:

x(4.40) = 3.65(4.40)^2 - 2.00(4.40) + 3.00 = 80.256 m

The distance traveled during the time interval from t = 3.20 s to t = 4.40 s is the difference between these two positions:

Distance = x(4.40) - x(3.20) = 80.256 m - 36.864 m = 43.392 m

The time elapsed during this interval is:

Time = t(4.40) - t(3.20) = 4.40 s - 3.20 s = 1.20 s

Average Speed = Distance / Time = 43.392 m / 1.20 s = 36.16 m/s

Therefore, the average speed between t = 3.20 s and t = 4.40 s is approximately 36.16 m/s.

To learn more about average

https://brainly.com/question/29646113

#SPJ11

After 30 min of running, at the 9.0 km point in a 10 km race, you find yourself 150 m behind the leader and moving at the same speed as she does. What should your acceleration be if you're to catch up by the finish line? Assume that the leader maintains constant speed the entire race.

Express your answer with the appropriate units.

*I got 0.007 and it was wrong so please also give with correct sig figs

Answers

To catch up to the leader by the finish line, your acceleration should be approximately 0.356 m/s².

To catch up to the leader by the finish line, you need to cover the remaining 1 km while closing the 150 m gap. This means your total displacement needs to be 1.15 km (or 1150 m).

Given that you have 30 min (or 1800 s) remaining to cover this distance, we can use the equation of motion:

s = ut + (1/2)at^2

Where:

s is the displacement (1150 m)

u is the initial velocity (same as the leader's velocity, since you are moving at the same speed)

t is the time (1800 s)

a is the acceleration (what we need to find)

Rearranging the equation to solve for acceleration:

a = 2(s - ut) / t^2

Substituting the known values:

a = 2(1150 m - 0 m/s * 1800 s) / (1800 s)^2

Calculating the result:

a ≈ 0.356 m/s²

Therefore, your acceleration should be approximately 0.356 m/s² in order to catch up to the leader by the finish line.

To know more about acceleration,

https://brainly.com/question/12550364#

#SPJ11

If an object is moving with constant momentum ⟨10,−14,−6⟩kg⋅m/s, what is the rate of change of momentum d
p

/dt ? d
p

/dt= (kg⋅m/s)/s What is the net force acting on the object?
F

net

= n

Answers

The rate of change of momentum is 0 and the net force acting on the object is 0.

To find the rate of change of momentum, we can take the derivative of the momentum vector with respect to time:

dP/dt = ⟨d(10)/dt, d(-14)/dt, d(-6)/dt⟩

Since the momentum is constant, the derivative of each component will be zero:

dP/dt = ⟨0, 0, 0⟩

Therefore, the rate of change of momentum is zero.

To find the net force acting on the object, we can use the equation F = dp/dt, where F is the net force and dp/dt is the rate of change of momentum. Since we know that the rate of change of momentum is zero, the net force must also be zero.

Therefore, the net force acting on the object is 0.

Read more about momentum here: https://brainly.com/question/18798405

#SPJ11

Other Questions
The probability that particular surgery is successful is 0.75. Find the probability that a) three of that types of surgeries are successful. b) none of the three surgeries are successful. c) Are the events in the previous two part (a) and (b) complementary? CHICAGO TRIBUNE COMPANY1. The Chicago Tribune is the seventh-largest newspaper in the country. Overhauling its data center andconsolidating servers was a difficult task; however, the payoff was tremendous. The Chicago Tribunesuccessfully moved its critical applications from a mishmash of mainframes and older SunMicrosystems servers to a new dual-site enterprise architecture, which has resulted in lower costs andincreased reliability throughout the company. The papers new enterprise architecture clustered itsservers over a two-mile distance, lighting up a 1 Gbps dark-fiber linkan optical fiber that is in placebut not yet being usedbetween two data centers. This architecture lets the newspaper spread theprocessing load between the servers while improving redundancy and options for disaster recovery.The transfer to the new architecture was not smooth. A small piece of software written for thetransition contained a coding error that caused the Tribunes editorial applications to experienceintermittent processing failures. As a result, the paper was forced to delay delivery to about 40percent of its 680,000 readers and cut 24 pages from a Monday edition, costing the newspaper nearly$1 million in advertising revenue. After editorial applications were stabilized, the Tribune proceededto migrate applications for operationsthe physical production and printing of the newspaperandcirculation to the new enterprise architecture. "As we gradually took applications off the mainframe,we realized that we were incurring very high costs in maintaining underutilized mainframes at twodifferent locations," said Darko Dejanovic, vice president and CTO of the Tribune Co., which ownsthe Chicago Tribune, the Los Angeles Times, Long Islands Newsday, and about a dozen othermetropolitan newspapers. "By moving from two locations to one, weve achieved several milliondollars in cost savings. Theres no question that server consolidation was the right move for us." TheTribune Co. is excited about its new enterprise architecture and is now looking to consolidatesoftware across its newspapers. Currently, each newspaper maintains its own classifiedadvertising and billing, which means the parent company must support about 10 billing packages andthe same number of classified-ad programs. The Tribune Co. has found that most of the businessprocesses can be standardized. So far, it has standardized about 95 percent of classified-ad processesand about 90 percent of advertising-sales processes. Over the next three years, the Tribune Co. willreplace the disparate billing and ad applications across the company with a single package that will beused by all business units. The different newspapers will not necessarily share the same data, but theywill have the same processes and the same systems for accessing them. Over time, that will allowsome of the call centers to handle calls for multiple newspapers; East Coast centers will handle theearly-morning calls, and West Coast centers the late-day and evening calls. The Tribune Co. islooking at a few additional projects including the implementation of hardware that will allow itsindividual applications to run on partial CPUs, freeing up processor power, and making more efficientuse of disk space.Required:A. Review the five characteristics of infrastructure architecture and rank them in order of theirpotential impact on Tribune Co.s business. (2 Marks)B. Explain the meaning of disaster recovery as it affects the Tribune Co (2 Marks)C. Define backups and recovery. What are the risks to the Tribune Co.s business if it fails toimplement an adequate backup plan? (2 Marks)D. Why is a scalable and highly available enterprise architecture critical to Tribune Co.s currentoperations and future growth? (2 Marks)E. Identify the need for information security at the Tribune Co. (2 Marks)F. How could the Tribune Co. use a "Classified Ad" Web service across its different businesses?(2 Marks) The marginal cost C of manufacturing x golf clubs may be expressed by the quadratic functionC(x) = 2.5x - 320x + 21,000How many clubs should be manufactured to minimize the marginal cost? caffeine and cocaine are both considered to be stimulant drugs True or False True or False? Product proliferation is an appropriate strategy to use in the dry-cleaning industry. Discuss various methods of financing a business for a soletrader.(400-460 words, no plagiarism and write in own words, citereference if any). Write the ratio as a fraction in lowest terms. (3.4)/(2.2) On a windy day a wind blows from S48.6W with a speed of 10.07 m/s. In this question i^ represents a unit vector in the easterly direction and j^ represents a unit vector in the northerly direction. Part 1) Present the velocity of the wind relative to the ground in unit vector notation. v^Wrelg=[ i^+[ j^m/s Part 2) You are on a boat travelling S64.3 E relative to the bank (ground) at a speed 3.67 m/s. What is the velocity of the wind relative to the boat? Give your answer in unit vector notation. v^w rel b =[i^+1j^m/s Part 3) You now walk across the deck of the boat. Your velocity relative to the deck is 0.548 m/s southwards. What is the velocity of the wind relative to you? V^w rel you =[ why did architects model building in washington d.c. on the classical style of the parthenon? as a symbol of peace and prosperityas a symbol of victoryas a symbol of democracyas a symbol of religious freedom Determine the amount of long-term debt for ABC Co. using the following balance sheet information: cash balance of $24,449, accounts payable of $95,003, common stock of $401,481, retained earnings of $501,842, inventory of $206,397, other assets equal to $76,831, net plant and equipment of $705,849, short-term notes payable of $30,000, and accounts receivable of $142,847. Long-Term Debt $ ABC CO had cash and marketable securities worth $1,216,238 accounts payables worth $4,180,307, inventory of $2,035,544, accounts receivables of $2,106,682, short-term notes payable worth $753,206, and other current assets of $80,726. What is the company's net working capital? Ellora wants to accumulate$150000.00in an RRSP by making annual contributions of$5000.00at the beginning of each year. If interest is5.5%compounded quarterly, calculate how long she has to make contributions. a.18.202125b.18.676765c.17.455483d.17.585794e.18.076686 Suppose that a price-taker firm has a marginal cost function given by: MC= 20+0.2q. The firm could join a cartel in its industry and agree to a quota of 10 units. The collusion drives the price of the good from $24.55 to $50.00.Suppose that if the firm cheats on the cartel, it has no effect on the price. Calculate the producer surplus of this firm when they cheat on the cartel. commercials and print ads undergo posttesting in order to: (25\%) Problem 2: An air-filled parallel-plate capacitor has a capacitance of 16.2F. How much charge, in microcoulombs, must leak off its plates before the voltage across them is reduced by 65 V ? q= C A spring attached to the ceiling is pulled 8 centimeters down from equilibrium and then released. The damping factor of the spring is 0.5, resulting in the spring oscillating 15 times per second. Write a function to model the distance, D, the end of the spring is from equilibrium in terms of seconds, t, since the spring was released. Your client decides to invest $3 million in Flama stock and $7 million in Blanca stock. The riskfree rate is 2% and the market risk premium is 6%. The beta of the Flama Stock is 2 , and the beta of the Blanca stock is 1 . a. What are the weights for this portfolio? b. What is the portfolio beta? c. What is the required retum of the portfolio? Under the imprest system the cashier has a fixed amount at the start of the period known as a float. The float is always restored at the end of the period. True or False Thirty five percent of all students who write exam clears. Twenty students were selected from a pool of students who wrote exam. a. Assuming x as the number in 20 students who will clear the exam, write the formula for finding the probability b. Use the formula to compute the probability that 1. exactly nine students clear the exam ii. at least five students clear the exam iii. three or fewer students clear the exam iv. at most two students clear the exam v. at most 18 students clear the exam In the summer, air conditioning improves human comfort by decreasing air temperature and humidity. Assume conditions outdoors of the lab room in Guelph are warm with an air temperature of 32.0 C and dew point temperature of 23.0 C (same values as in la). The air conditioner is operating to bring the water vapour pressure and humidity down to the values you calculated in 2a ). Calculate the mass of water in kg that the air conditioner is removing over a 1-hour period to bring the water vapour pressure down to the measured in-class value (i.e. indoors), given that the air conditioner is operating at a flow rate of 2 m 3 per minute. Note: for this calculation you will need to consider the difference in conditions between indoors and outdoors A group of friends wants to launch a company. They all work together to contribute half the required capital and are capable of running the business. They request for funding through Islamic finance in order to contribute the significant remaining 50% of the money without engaging in management.?a. Determining the appropriate Islamic financial Instrumentsb. Evaluate one of the risks and the risks mitigate