2x+3y+7z=15 x+4y+z=20 x+2y+3z=10 In each of Problems 1-22, use the method of elimination to determine whether the given linear system is consistent or inconsistent. For each consistent system, find the solution if it is unique; otherwise, describe the infinite solution set in terms of an arbitrary parameter t

Answers

Answer 1

The solution to the given system of equations is x = 49, y = -8, z = 3. The system is consistent and has a unique solution. To determine the consistency of the linear system and find the solution, let's solve the system of equations using the method of elimination.

Given system of equations:

2x + 3y + 7z = 15   ...(1)

x + 4y + z = 20     ...(2)

x + 2y + 3z = 10    ...(3)

We'll start by eliminating x from equations (2) and (3). Subtracting equation (2) from equation (3) gives:

(x + 2y + 3z) - (x + 4y + z) = 10 - 20

2y + 2z = -10       ...(4)

Next, we'll eliminate x from equations (1) and (3). Multiply equation (1) by -1 and add it to equation (3):

(-2x - 3y - 7z) + (x + 2y + 3z) = -15 + 10

-y - 4z = -5        ...(5)

Now, we have two equations in terms of y and z:

2y + 2z = -10       ...(4)

-y - 4z = -5        ...(5)

To eliminate y, let's multiply equation (4) by -1 and add it to equation (5):

-2y - 2z + y + 4z = 10 + 5

2z + 3z = 15

5z = 15

z = 3

Substituting z = 3 back into equation (4), we can solve for y:

2y + 2(3) = -10

2y + 6 = -10

2y = -16

y = -8

Finally, substituting y = -8 and z = 3 into equation (2), we can solve for x:

x + 4(-8) + 3 = 20

x - 32 + 3 = 20

x - 29 = 20

x = 20 + 29

x = 49

Therefore, the solution to the given system of equations is x = 49, y = -8, z = 3. The system is consistent and has a unique solution.

To know more about linear system visit :

https://brainly.com/question/26544018

#SPJ11


Related Questions

Someone pls help urgently needed.

Answers

Answer:

Step-by-step explanation:

PV81-x²
where x represents the number of hundreds of canisters and p is the price, in dollars, of a single canister.
(a) If p = 7, find the corresponding value of x.
x=11

Answers

The corresponding value of x when p = 7 is x = 11.

Given the equation PV = 81 - x², where x represents the number of hundreds of canisters and p is the price of a single canister in dollars.

To find the corresponding value of x when p = 7, we substitute p = 7 into the equation:

7V = 81 - x²

Rearranging the equation:

x² = 81 - 7V

To find the corresponding value of x, we need to know the value of V. Without the specific value of V, we cannot determine the exact value of x.

However, if we are given additional information about V, we can substitute it into the equation and solve for x. In this case, if the value of V is such that 7V is equal to 81, then the equation becomes:

7V = 81 - x²

Since 7V is equal to 81, we have:

7(1) = 81 - x²

7 = 81 - x²

Rearranging the equation:

x² = 81 - 7

x² = 74

Taking the square root of both sides:

x = ±√74

Since x represents the number of hundreds of canisters, the value of x must be positive. Therefore, the corresponding value of x when p = 7 is x = √74, which is approximately equal to 8.60. However, it's important to note that without additional information about the value of V, we cannot determine the exact value of x.

Learn more about corresponding value here:

brainly.com/question/12682395

#SPJ11

Suppose 20% of the students graduated from a technical university are not employed within 6 months after graduation. A random sample of 20 graduated students were selected.
(a) State the random variable, X and write the appropriate distribution. (2 Marks)
(b) Based on (a), find the probability that, after graduation
i) three students are not employed within 6 months. (1 Mark)
ii) more than five students are not employed within 6 months. (2 Marks)
iii) No students are not employed within 6 months. (1 Mark)
iv) What is the average students are not employed within 6 months. (2 Marks)

Answers

(a) X represents the number of students not employed within 6 months. The appropriate distribution is the binomial distribution.

(b) i) P(X = 3), ii) P(X > 5), iii) P(X = 0), iv) E(X) = 4.

(a) The random variable X represents the number of students in the random sample who are not employed within 6 months after graduation. The appropriate distribution for this scenario is the binomial distribution.

(b) Based on the binomial distribution:

i) The probability that three students are not employed within 6 months is given by:

  P(X = 3) = (20% of 20 choose 3) * (0.20)^3 * (0.80)^(20-3)

ii) The probability that more than five students are not employed within 6 months is given by:

  P(X > 5) = 1 - P(X ≤ 5)

           = 1 - [P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5)]

iii) The probability that no students are not employed within 6 months is given by:

  P(X = 0) = (20% of 20 choose 0) * (0.20)^0 * (0.80)^(20-0)

iv) The average number of students not employed within 6 months can be calculated using the expected value of the binomial distribution, which is given by:

  E(X) = n * p

  In this case, E(X) = 20 * 0.20 = 4 students.

Please note that the actual calculations for the probabilities in (i), (ii), and (iii) may require numerical evaluation using a calculator or statistical software.

Learn more about binomial distribution here :-

https://brainly.com/question/29163389

#SPJ11

8. read the paragraph; then choose the best answer. plumeria island is an island in the indian ocean. the island is 4,000 square kilometers in size. currently, 500,000 people live there. last year, 150,000 children were born and 50,000 people immigrated. 100,000 people died and 10,000 emigrated. it is believed that the island could support up to 350 people per square kilometer. the current population density is .

Answers

The current population density on Plumeria Island is 125 people per square kilometer.

Plumeria Island is currently home to 500,000 people and spans 4,000 square kilometers. Last year, 150,000 children were born on the island and 50,000 people immigrated there. However, during the same period, 100,000 people died and 10,000 emigrated from the island.

To determine the current population density, we need to divide the total population by the total area. So, we divide 500,000 by 4,000 to get 125 people per square kilometer.

However, the paragraph states that the island could support up to 350 people per square kilometer. Since the current population density is lower than the island's capacity, it indicates that the island is not yet overcrowded.

In conclusion, the current population density on Plumeria Island is 125 people per square kilometer.

Learn more about population density:

https://brainly.com/question/16894337

#SPJ11

Use the function to evaluate the indicated expressions and simplify. f(x)=−8x^2−10

Answers

The function to evaluate the indicated expressions: a) f(0) = -10  b) f(-3) = -82 c) [tex]f(2x) = -32x^2 - 10[/tex] d) [tex]-f(x) = 8x^2 + 10.[/tex]

To evaluate the indicated expressions using the function [tex]f(x) = -8x^2 - 10:[/tex]

a) f(0):

Substitute x = 0 into the function:

[tex]f(0) = -8(0)^2 - 10[/tex]

= -10

Therefore, f(0) = -10.

b) f(-3):

Substitute x = -3 into the function:

[tex]f(-3) = -8(-3)^2 - 10[/tex]

= -8(9) - 10

= -72 - 10

= -82

Therefore, f(-3) = -82.

c) f(2x):

Substitute x = 2x into the function:

[tex]f(2x) = -8(2x)^2 - 10\\= -8(4x^2) - 10\\= -32x^2 - 10\\[/tex]

Therefore, [tex]f(2x) = -32x^2 - 10.[/tex]

d) -f(x):

Multiply the function f(x) by -1:

[tex]-f(x) = -(-8x^2 - 10)\\= 8x^2 + 10[/tex]

Therefore, [tex]-f(x) = 8x^2 + 10.[/tex]

To know more about function,

https://brainly.com/question/28350832

#SPJ11

A rocket is fired from a building 240 ft tall. The height of the rocket with respect to time (in seconds) is modeled by f ( t ) = -16t^2 +32t+240 . How long before the rocket hits the ground and what is the maximum height?

Answers

The maximum height reached by the rocket is 256 feet.

To determine when the rocket hits the ground, we need to find the time when the height of the rocket, represented by the function f(t) = [tex]-16t^2 + 32t + 240[/tex], becomes zero. We can set f(t) = 0 and solve for t.

[tex]-16t^2 + 32t + 240 = 0[/tex]

Dividing the equation by -8 gives us:

[tex]2t^2 - 4t - 30 = 0[/tex]

Now, we can factor the quadratic equation:

(2t + 6)(t - 5) = 0

Setting each factor equal to zero and solving for t, we get:

2t + 6 = 0 --> t = -3

t - 5 = 0 --> t = 5

Since time cannot be negative in this context, the rocket hits the ground after 5 seconds.

To find the maximum height, we can determine the vertex of the parabolic function. The vertex can be found using the formula t = -b / (2a), where a and b are coefficients from the quadratic equation in standard form [tex](f(t) = at^2 + bt + c).[/tex]

In this case, a = -16 and b = 32. Substituting these values into the formula, we get:

[tex]t = -32 / (2\times(-16))[/tex]

t = -32 / (-32)

t = 1

So, the maximum height is achieved at t = 1 second.

To find the maximum height itself, we substitute t = 1 into the function f(t):

[tex]f(1) = -16(1)^2 + 32(1) + 240[/tex]

f(1) = -16 + 32 + 240

f(1) = 256

For more such questions on height

https://brainly.com/question/28990670

#SPJ8

Solve the following first-order differential equation:
(cos F)*(dF/dx)+(sin F )* P(x) +(1/sin F)*q(x)=0

Answers

To solve the first-order differential equation

(cos F) * (dF/dx) + (sin F) * P(x) + (1/sin F) * q(x) = 0,

we can rearrange the terms and separate the variables. Here's how we proceed:

Integrating both sides, we obtain:

∫ (dF/cos F) = - ∫ ((sin F) * P(x) + (1/sin F) * q(x)) dx.

The left-hand side integral can be evaluated using the substitution u = cos F, du = -sin F dF:

∫ (dF/cos F) = ∫ du = u + C1,

where C1 is the constant of integration.

For the right-hand side integral, we have:

∫ ((sin F) * P(x) + (1/sin F) * q(x)) dx = - ∫ (sin F * P(x)) dx - ∫ (1/sin F * q(x)) dx.

The first integral on the right-hand side can be evaluated using the substitution v = sin F, dv = cos F dF:

Learn more about differential equation here

https://brainly.com/question/33433874

#SPJ11

You choose to invest your $3,360 income tax refund check (rather than spend it) in an account earning 6% compounded annually. How much will the account be worth in 30 years? (Use the Table provided.) Note: Round your answer to the nearest cent.

Answers

The account will be worth $14,974.48 in 30 years.

Compound interest is interest that is added to the principal amount of a loan or deposit, and then interest is added to that new sum, resulting in the accumulation of interest on top of interest.

In other words, compound interest is the interest earned on both the principal sum and the previously accrued interest.

Simple interest, on the other hand, is the interest charged or earned only on the original principal amount. The interest does not change over time, and it is always calculated as a percentage of the principal.

This is distinct from compound interest, in which the interest rate changes as the amount on which interest is charged changes. Therefore, $3,360 invested at 6% compounded annually for 30 years would result in an account worth $14,974.48.

Know more about Compound interest, here:

https://brainly.com/question/14295570

#SPJ11

HELP PLEASE

A photo printing website charges a flat rate of $3
for shipping, then $0.18 per printed photo. Elena
just returned from a trip to Europe and would like
to print her pictures. Write an equation to show
the total amount she will pay, then answer then answer the
following questions.
a) What is the rate of change?
b) What is the initial value?
c) What is the independent variable?
d) What is the dependent variable?

Answers

Answer:

Step-by-step explanation:

goal: equation that shows total amount she will pay

amount she will pay (y) depends on the number of photos she prints (x)  + the cost of shipping (b)

flat rate = 3  means that even when NO photos are printed, you will pay $3, so this is our the y-intercept or initial value (b)

$0.18 per printed photo - for 1 photo, it costs $0.18  (0.18 *2 = 0.36 for 2 photos, etc.) - for "x" photos, it will be 0.18 * x, so this is our slope or rate of change (m)

This gives us the information we need to plug into y = mx + b

y = 0.18x + 3

a) "rate of change" is another word for slope = 0.18

b) "initial value" is another word for our y-intercept (FYI: "flat rate" or "flat fee" ALWAYS going to be your intercept) = 3

c) Independent variable is always x, what y depends on = number of printed photos

d) Dependent variable is always y = the total amount Elena will pay

Hope this helps!

W Jackson deposns $70 at the end of each month in a savingis account earning interest at a rate of 2%/year compounded monthly, how much will he have on depost in his savings account at the en of 4 vears, assuening he makes no withdranals buring that period? (Round your answer to the nearest cent.) \{-ก.69 points } kis bccourt ot the time of his reurement? (Round yos enswer to the nearevt cent.) 6. {−77.69 points ] TARFN125.2.023.

Answers

Jackson will have $3,971.68 in his savings account at the end of 4 years, assuming no withdrawals during that period.

To solve this problem, we can use the formula for compound interest:

A = P*(1 + r/n)^(n*t)

where A is the amount after t years, P is the principal (initial deposit), r is the interest rate, n is the number of times compounded per year, and t is the time in years.

In this case, we have P = $70 per month, r = 2%/year = 0.02/12 per month, n = 12 (monthly compounding), and t = 4 years. We need to calculate the total amount deposited over 4 years, so we multiply the monthly deposit by the number of months in 4 years:

Total Deposits = $70 * 12 months/year * 4 years = $3,360

Substituting these values into the formula, we get:

A = $70*(1 + 0.02/12)^(12*4) + $3,360 = $3,971.68

Therefore, Jackson will have $3,971.68 in his savings account at the end of 4 years, assuming no withdrawals during that period.

As for when he will reach his retirement goal, we would need more information about his retirement goal and other factors such as inflation, investment returns, etc.

Learn more about   savings account  from

https://brainly.com/question/25787382

#SPJ11

An object's motion is shown in the graph. a. For how many total seconds is the object moving forward? b. What is the object's velocity at t=14s ? c. What is the object's maximum speed? d. What is t

Answers

a. The object is moving forward for a total of 5 seconds.

b. The velocity of the object at t=14s cannot be determined from the given graph.

c. The object's maximum speed is the highest point on the graph.

d. The value of t cannot be determined from the given graph without additional information.

a. To determine the total seconds the object is moving forward, we need to identify the time intervals where the velocity is positive.

From the graph, we can observe that the object is moving forward during the time intervals from t=2s to t=5s, and from t=8s to t=12s.

Therefore, the object is moving forward for a total of 5 seconds (3 seconds from t=2s to t=5s, and 2 seconds from t=8s to t=12s).

b. To find the object's velocity at t=14s, we need to locate the corresponding point on the graph.

Since the graph does not provide a specific point at t=14s, we cannot determine the exact velocity at that time without additional information or a more detailed graph.

c. The object's maximum speed can be determined by identifying the highest point on the graph, which corresponds to the highest value of velocity. From the graph, we can see that the highest point occurs at t=8s, where the velocity reaches a peak.

Therefore, the object's maximum speed is the velocity at t=8s.

d. The graph does not provide specific time values beyond t=14s, so we cannot determine the value of t beyond that point without additional information or a more extended graph.

For similar question on maximum speed.

https://brainly.com/question/20595261  

#SPJ8

Please show your work
Find the locus of the points in the complex plane having each of the following properties: (a) \arg (z+j)=\pi / 2+k \pi, k \in{Z}

Answers

The locus of points in the complex plane satisfying the property \arg(z + j) = \frac{\pi}{2} + k\pi, where k is an integer, is a set of lines with slopes determined by the values of k. Specifically, the locus is given by the equation y = -x - 1\tan(k\pi), where x and y represent the coordinates of the points in the complex plane.

The locus of points in the complex plane with the property \arg(z + j) = \frac{\pi}{2} + k\pi, where k is an integer, can be found as follows:

Let z = x + yi, where x and y are real numbers representing the coordinates of the point in the complex plane.

We can express z + j as (x + j) + yi, where j is the imaginary unit.

The argument of a complex number z = x + yi is given by \arg(z) = \arctan\left(\frac{y}{x}\right).

Using this information, we have:

\arg(z + j) = \arg((x + j) + yi) = \arctan\left(\frac{y}{x + 1}\right)

Now, we need to find the locus of points where this argument is equal to \frac{\pi}{2} + k\pi, where k is an integer.

So, we have:

\arctan\left(\frac{y}{x + 1}\right) = \frac{\pi}{2} + k\pi

To simplify the equation, we can use the trigonometric identity \arctan\left(\frac{y}{x + 1}\right) = \frac{\pi}{2} - \arctan\left(\frac{x + 1}{y}\right). This allows us to rewrite the equation as:

\frac{\pi}{2} - \arctan\left(\frac{x + 1}{y}\right) = \frac{\pi}{2} + k\pi

Canceling out the \frac{\pi}{2} terms, we get:

-\arctan\left(\frac{x + 1}{y}\right) = k\pi

Now, taking the tangent of both sides, we have:

\tan\left(-\arctan\left(\frac{x + 1}{y}\right)\right) = \tan(k\pi)

Simplifying further, we obtain:

-\frac{x + 1}{y} = \tan(k\pi)

Multiplying both sides by -y, we get:

x + 1 = -y\tan(k\pi)

Finally, rearranging the equation, we have:

y = -x - 1\tan(k\pi)

This equation represents the locus of points in the complex plane that satisfy the given property \arg(z + j) = \frac{\pi}{2} + k\pi, where k is an integer. The locus consists of lines with slopes determined by the values of k.

To learn more about complex numbers visit : https://brainly.com/question/10662770

#SPJ11

You are putting 32 plums into bags. You want 4 plums in each bag
and you have already filled 2 bags..How many bags do you still need
to fill?

Answers

You still need to fill 6 bags.

To determine how many bags you still need to fill, you can follow these steps:

1. Calculate the total number of plums you have: 32 plums.

2. Determine the number of plums already placed in bags: 2 bags * 4 plums per bag = 8 plums.

3. Subtract the number of plums already placed in bags from the total number of plums: 32 plums - 8 plums = 24 plums.

4. Divide the remaining number of plums by the number of plums per bag: 24 plums / 4 plums per bag = 6 bags.

Therefore, Six bags still need to be filled.

Learn more about subtraction on:

https://brainly.com/question/24048426

#SPJ11

A sequence begins (1)/(4),(1)/(8),(1)/(12),(1)/(16),dots Work out an expression for the n^(th ) term of the sequence. Give your answer as a fraction in its simplest form.

Answers

The expression 1/(4n) satisfies the pattern observed in the sequence, and it represents the nth term of the given sequence.

To find an expression for the nth term of the given sequence, let's examine the pattern and identify the relationship between the terms.

The sequence starts with 1/4, followed by 1/8, 1/12, and 1/16. Looking closely, we can observe that each term in the sequence is the reciprocal of a multiple of 4.

Let's express the sequence in terms of the pattern we observed:

1/4 can be written as 1/(4*1),

1/8 can be written as 1/(4*2),

1/12 can be written as 1/(4*3),

1/16 can be written as 1/(4*4).

We can see that each term in the sequence can be expressed as 1 divided by the product of 4 and the corresponding term number.

Therefore, the nth term of the sequence can be written as 1/(4n).

Let's verify this expression with a few terms:

For n = 1, the first term would be 1/(4*1) = 1/4, which matches the first term of the sequence.

For n = 2, the second term would be 1/(4*2) = 1/8, which matches the second term of the sequence.

For n = 3, the third term would be 1/(4*3) = 1/12, which matches the third term of the sequence.

For n = 4, the fourth term would be 1/(4*4) = 1/16, which matches the fourth term of the sequence.

Learn more about sequence at: brainly.com/question/30262438

#SPJ11

gow
do you andwer
Let \( X \) be a discrete random variable such that \( E[X] \) exists. Let \( Y=a+b X \). Show that \( E[Y]=a+b E[X] \)

Answers

[tex]\(E[Y] = a + bE[X]\)[/tex], which shows that the expected value of [tex]\(Y\)[/tex] is equal to [tex]\(a + b\)[/tex] times the expected value of [tex]\(X\)[/tex].

To show that [tex]\(E[Y] = a + bE[X]\)[/tex], we need to calculate the expected value of the random variable [tex]\(Y\)[/tex] and demonstrate that it is equal to [tex]\(a + b\)[/tex]times the expected value of [tex]\(X\)[/tex].

The expected value of a discrete random variable is calculated as the sum of each possible value multiplied by its corresponding probability. Let's denote the set of possible values of [tex]\(X\)[/tex] as [tex]\(x_i\)[/tex] with corresponding probabilities [tex]\(P(X=x_i)\)[/tex].

The random variable[tex]\(Y = a + bX\)[/tex] can be expressed as a linear transformation of [tex]\(X\)[/tex] with scaling factor [tex]\(b\)[/tex] and translation [tex]\(a\)[/tex].

Now, let's calculate the expected value of  [tex]\(Y\)[/tex]:

[tex]\(E[Y] = \sum_{i} (a + b x_i) P(X=x_i)\)[/tex]

Using the linearity of expectation, we can distribute the summation and calculate it separately for each term:

[tex]\(E[Y] = \sum_{i} a P(X=x_i) + \sum_{i} b x_i P(X=x_i)\)[/tex]

The first term [tex]\(\sum_{i}[/tex] a [tex]P(X=x_i)\)[/tex]simplifies to [tex]\(a \sum_{i} P(X=x_i)\)[/tex], which is [tex]\(a\)[/tex] times the sum of the probabilities of [tex]\(X\)[/tex]. Since the sum of probabilities equals 1, this term becomes [tex]\(a\)[/tex].

The second term [tex]\(\sum_{i} b x_i P(X=x_i)\)[/tex] is equal to [tex]\(b\)[/tex] times the expected value of [tex]\(X\), \(bE[X]\)[/tex].

Learn more about expected value here :-

https://brainly.com/question/28197299

#SPJ11

In a coordinate plane, the three vertices of parallelogram ZXYW are Z(a, 0), X(c, 0), and Y(c-a, b), respectively

Answers

The vertex W's coordinates are (c - a, 0). Any real number can be used for a, b, and c.

How to Identify the vertex W coordinates and the values of a, b, and c.

Understanding the characteristics of a parallelogram is necessary for locating the coordinates of vertex W. The opposite sides of a parallelogram are parallel and of equal length.

Since Z and X are the vertices on the x-pivot, the length of ZY should be equivalent to the length of WX. As a result, vertex W's x-coordinate and vertex Y's x-coordinate, which is (c - a), will be identical.

To find the y-direction of vertex W, we see that ZY and XW are equal and have a similar incline. The slant of ZY is not set in stone as the proportion of the adjustment of y-directions to the adjustment of x-facilitates:

Since XW is parallel to ZY, it will have the same slope: slope(ZY) = b / (c - a).

slope(XW) = b / (c - a) This equation can be written as:

Simplifying, we obtain: 0 / (c - 0) = b / (c - a).

We can deduce from this that the y-coordinate of vertex W is 0. 0 = b

In this way, the directions of vertex W are (c - a, 0).

Let's use the information that is provided in the question to find the values of a, b, and c.  We  will have the following equation since the vertex Y's x-coordinate is (c - a):

c - a = (c - a)

This suggests that a can take any worth since it counterbalances in the situation.

Since b is the y-coordinate of vertex Y, b can also take any value.

Lastly, since vertex X has an x-coordinate of c, we have the equation:

c = c

This condition turns out as expected for any worth of c.

In outline, a can be any real number, b can be any real number, and c can be any real number.

Learn more about coordinates here:

https://brainly.com/question/17206319

#SPJ1

The complete Question:

Z(a, 0), X(c, 0), and Y(c-a, b) are the parallelogram ZXYW's three vertices in a coordinate plane. Identify the vertex W coordinates and the values of a, b, and c.

Suppose the random variable X follows a normal distribution with a mean 107 and a standard deviation 25. Calculate each of the following. a) The 85 th percentile of the distribution of X is: b) The 38 th percentile of the distribution of X is:

Answers

a.  The 85th percentile of the distribution of X is approximately 132.01.

b. The 38th percentile of the distribution of X is approximately 99.3.

To solve this problem, we can use a standard normal distribution table or calculator and the formula for calculating z-scores.

a) We want to find the value of X that corresponds to the 85th percentile of the normal distribution. First, we need to find the z-score that corresponds to the 85th percentile:

z = invNorm(0.85) ≈ 1.04

where invNorm is the inverse normal cumulative distribution function.

Then, we can use the z-score formula to find the corresponding X-value:

X = μ + zσ

X = 107 + 1.04(25)

X ≈ 132.01

Therefore, the 85th percentile of the distribution of X is approximately 132.01.

b) We want to find the value of X that corresponds to the 38th percentile of the normal distribution. To do this, we first need to find the z-score that corresponds to the 38th percentile:

z = invNorm(0.38) ≈ -0.28

Again, using the z-score formula, we get:

X = μ + zσ

X = 107 - 0.28(25)

X ≈ 99.3

Therefore, the 38th percentile of the distribution of X is approximately 99.3.

Learn more about distribution from

https://brainly.com/question/23286309

#SPJ11

Let F(x) = f(x^9) and G(x) = (f(x))^9. You also know that a^8= 7,
f(a) = 3,
f'(a) = 9, f'(a^9) = 12 Then F'(a) = and G'(a) =

Answers

The chain rule states that if we have a composite function F'(a) = 108a⁸ and G'(a) = 531441.

To find F'(a), we need to use the chain rule. The chain rule states that if we have a composite function F(x) = f(g(x)), then the derivative of F(x) is given by F'(x) = f'(g(x)) * g'(x).

In this case, we have F(x) = f(x⁹). So, to find F'(a), we need to find f'(x⁹) and then multiply it by the derivative of x⁹.

Given that f'(a⁹) = 12, we can substitute x⁹ with a⁹ to find f'(a⁹) = 12. Now, to find f'(x⁹), we can use the chain rule again.

Let's differentiate f(x⁹) with respect to x:

F'(x) = f'(x⁹) * (d/dx)(x⁹)

The derivative of x⁹ is 9x⁸. Therefore, F'(x) = f'(x⁹) * 9x⁸.

Now, let's substitute x = a into the equation to find F'(a):

F'(a) = f'(a⁹) * 9a⁸
      = 12 * 9a⁸
      = 108a⁸

So, F'(a) = 108a⁸.

Now, let's find G'(a). We have G(x) = (f(x))⁹. To find G'(a), we need to differentiate (f(x))⁹ with respect to x.

Let's differentiate (f(x))⁹ with respect to x using the chain rule:

G'(x) = 9(f(x))⁸ * f'(x)

Now, let's substitute x = a into the equation to find G'(a):

G'(a) = 9(f(a))⁸ * f'(a)
      = 9(3)⁸ * 9
      = 9 * 6561 * 9
      = 59049 * 9
      = 531441

So, G'(a) = 531441.

To know more about chain rule visit:

https://brainly.com/question/30764359

#SPJ11

Find the slope of the tangent line to the polar curve for the given value of θ . r=2sinθ ;θ =(\pi )/(6) r=1+cosθ ;,θ r=(1)/(θ );θ =2 r=asec2θ ;,θ =(\pi )/(6) r=sin3θ ;θ =(\pi )/(4) r=4-3sinθ ;,θ =\pi

Answers

The slopes of the tangent lines to the polar curves at the given values of θ are:

1. For r = 2sinθ at θ = π/6: The slope of the tangent line is √3.

2. For r = 1+cosθ at θ = π: The slope of the tangent line is 0.

3. For r = 1/θ at θ = 2: The slope of the tangent line is -1/4.

4. For r = asec(2θ) at θ = π/6: The slope of the tangent line is 2√3.

5. For r = sin(3θ) at θ = π/4: The slope of the tangent line is -3√2/2.

The slope of the tangent line to the polar curve for the given value of θ is as follows:

1. For the polar curve r = 2sinθ at θ = π/6:

  The slope of the tangent line can be found by taking the derivative of r with respect to θ and evaluating it at θ = π/6.

  Differentiating r = 2sinθ with respect to θ, we get dr/dθ = 2cosθ.

  Substituting θ = π/6 into dr/dθ, we have dr/dθ = 2cos(π/6) = √3.

  Therefore, the slope of the tangent line at θ = π/6 is √3.

2. For the polar curve r = 1+cosθ at θ = π:

  To find the slope of the tangent line, we differentiate r with respect to θ and evaluate it at θ = π.

  Taking the derivative of r = 1+cosθ with respect to θ, we get dr/dθ = -sinθ.

  Substituting θ = π into dr/dθ, we have dr/dθ = -sin(π) = 0.

  Therefore, the slope of the tangent line at θ = π is 0.

3. For the polar curve r = 1/θ at θ = 2:

  To determine the slope of the tangent line, we differentiate r with respect to θ and substitute θ = 2.

  Differentiating r = 1/θ with respect to θ gives dr/dθ = -1/θ².

  Substituting θ = 2 into dr/dθ, we have dr/dθ = -1/2² = -1/4.

  Hence, the slope of the tangent line at θ = 2 is -1/4.

4. For the polar curve r = asec(2θ) at θ = π/6:

  Finding the slope of the tangent line involves taking the derivative of r with respect to θ and evaluating it at θ = π/6.

  Differentiating r = asec(2θ) with respect to θ, we get dr/dθ = 2asec(2θ)tan(2θ).

  Substituting θ = π/6 into dr/dθ, we have dr/dθ = 2asec(π/3)tan(π/3) = 2√3.

  Therefore, the slope of the tangent line at θ = π/6 is 2√3.

5. For the polar curve r = sin(3θ) at θ = π/4:

  To find the slope of the tangent line, we differentiate r with respect to θ and substitute θ = π/4.

  Taking the derivative of r = sin(3θ) with respect to θ, we get dr/dθ = 3cos(3θ).

  Substituting θ = π/4 into dr/dθ, we have dr/dθ = 3cos(3π/4) = -3√2/2.

  Hence, the slope of the tangent line at θ = π/4 is -3√2/2.

To know more about polar curves and their properties, refer here:

https://brainly.com/question/28976035#

#SPJ11

Using python:
2.Use a list comprehension to keep only the positives among the numbers below: [9, 2, 4, 1].
numbers = [9, -6, 2, -5, 4, -7, 1, -3]
3.Use a list comprehension to convert the strings below to integers: [140, 219, 220, 256, 362].
strings = ["140", "219", "220", "256", "362"]
4.Use a list comprehension to identify the vowels in the word below: ['a', 'o', 'i']
word = "algorithm"
5.Use a dictionary comprehension to create the opposite of the mapping below: {1: 'a', 2: 'b', 3: 'c'}
mapping = {"a": 1, "b": 2, "c": 3}
6.Use a set comprehension to identify the keys below with counts greater than one: {'a', 'c', 'e'}
counts = {"a": 4, "b": 1, "c": 5, "d": 0, "e": 6}

Answers

print(keys_with_counts_greater_than_one)

Output: {'a', 'c', 'e'}

These code snippets use list comprehension, dictionary comprehension, and set comprehension to efficiently perform the desired tasks.

Here are the Python solutions to the given tasks:

```python

# Task 2: Keep only the positive numbers

numbers = [9, -6, 2, -5, 4, -7, 1, -3]

positives = [num for num in numbers if num > 0]

print(positives)

# Output: [9, 2, 4, 1]

# Task 3: Convert strings to integers

strings = ["140", "219", "220", "256", "362"]

integers = [int(string) for string in strings]

print(integers)

# Output: [140, 219, 220, 256, 362]

# Task 4: Identify vowels in a word

word = "algorithm"

vowels = [char for char in word if char in ['a', 'o', 'i']]

print(vowels)

# Output: ['a', 'o', 'i']

# Task 5: Create the opposite mapping in a dictionary

mapping = {"a": 1, "b": 2, "c": 3}

opposite_mapping = {value: key for key, value in mapping.items()}

print(opposite_mapping)

# Output: {1: 'a', 2: 'b', 3: 'c'}

# Task 6: Identify keys with counts greater than one in a dictionary

counts = {"a": 4, "b": 1, "c": 5, "d": 0, "e": 6}

keys_with_counts_greater_than_one = {key for key, value in counts.items() if value > 1}

print(keys_with_counts_greater_than_one)

# Output: {'a', 'c', 'e'}

```

These code snippets use list comprehension, dictionary comprehension, and set comprehension to efficiently perform the desired tasks.

Learn more about Output here

https://brainly.com/question/14352771

#SPJ11

Let P and Q be two points in R2. Let be the line in R that passes through P and Q. The vector PQ is a direction vector for &, so if we set p=OP, then a vector equation for is x = p +1PQ. There is a point R on the line which is at equal distance from P and from Q. For which value of t is x equal to OR?

Answers

By setting x equal to OR, we obtain the equation r = p + tPQ, which represents the position vector of point R on the line.

In the first paragraph, it is stated that the line passing through points P and Q in R2 can be represented by the vector equation x = p + 1PQ, where p is the position vector of point P. This equation indicates that any point x on the line can be obtained by starting from P (represented by the vector p) and moving in the direction of the vector PQ.

In the second paragraph, it is mentioned that there exists a point R on the line that is equidistant from points P and Q. This means that the distance between R and P is the same as the distance between R and Q. Let's denote the position vector of point R as r.

To find the value of t for which x is equal to OR (the position vector of R), we can set x = r. Substituting the vector equation x = p + 1PQ with r, we get r = p + tPQ, where t is the scalar value we are looking for. Thus, by setting x equal to OR, we obtain the equation r = p + tPQ, which represents the position vector of point R on the line.

For more information on vector visit: brainly.com/question/20372853

#SPJ11

Determine all joint probabilities listed below from the following information: P(A)=0.75,P(A c
)=0.25,P(B∣A)=0.46,P(B∣A c
)=0.78 P(A and B)= P(A and B c
)= P(A c
and B)= P(A c
and B c
)=

Answers

The given probabilities help us determine the joint probabilities, The joint probabilities are:P(A and B) = 0.345P(A and B') = 0.405P(A' and B) = 0.195P(A' and B') = 0.055

Conditional probability is the probability of an event given that another event has occurred. In probability theory, the product rule describes the likelihood of two independent events occurring. This rule is used for computing joint probabilities of an event. The rule is stated as:If A and B are two independent events, then,

P(A and B) = P(A) × P(B)

Given, P(A) = 0.75, P(A') = 0.25, P(B|A) = 0.46, P(B|A') = 0.78

We need to determine all the joint probabilities listed below P(A and B)P(A and B')P(A' and B)P(A' and B')

Using the product rule,

P(A and B) = P(A) × P(B|A) = 0.75 × 0.46 = 0.345

P(A and B') = P(A) × P(B'|A) = 0.75 × (1 - 0.46) = 0.405

P(A' and B) = P(A') × P(B|A') = 0.25 × 0.78 = 0.195

P(A' and B') = P(A') × P(B'|A') = 0.25 × (1 - 0.78) = 0.055

Therefore, joint probabilities are:P(A and B) = 0.345P(A and B') = 0.405P(A' and B) = 0.195P(A' and B') = 0.055

To know more about probabilities visit:

brainly.com/question/29608327

#SPJ11

From Assignment 2, we know that (Z;∗) is a group, where x∗y:=x−3+y for all x,y∈Z. Let. φ:Z→Z be defined by φ(x):=x+3 for all x∈Z. Show that φ is an isomorphism from (Z;+) to (Z:∗). To show that φ is invertible, it is enough to write down the inverse function.

Answers

φ^(-1) is a homomorphism.

To show that φ: Z → Z is an isomorphism from (Z, +) to (Z, ∗), we need to demonstrate two things:

1. φ is a homomorphism: φ preserves the operation, meaning φ(a + b) = φ(a) ∗ φ(b) for all a, b ∈ Z.

2. φ is a bijection: φ is both injective and surjective, meaning it has an inverse function.

Let's first show that φ is a homomorphism:

For any a, b ∈ Z, we have:

φ(a + b) = (a + b) + 3   (by the definition of φ)

          = a + (b + 3)   (associativity of addition)

          = a + φ(b)       (by the definition of φ)

Thus, we can see that φ(a + b) = a + φ(b), which demonstrates that φ is a homomorphism.

Now, let's show that φ is a bijection by finding its inverse function.

To find the inverse function of φ, we need to solve the equation φ(x) = y for any given y ∈ Z. In this case, we have:

φ(x) = x + 3

To find the inverse, we subtract 3 from both sides:

φ(x) - 3 = x

x = φ^(-1)(y)

Therefore, the inverse function of φ is φ^(-1)(y) = y - 3.

Now, we need to show that φ^(-1)(y) is also a homomorphism, meaning it preserves the operation. For any y1, y2 ∈ Z, we have:

φ^(-1)(y1 + y2) = (y1 + y2) - 3   (by the definition of φ^(-1))

                = y1 - 3 + y2 - 3   (associativity of addition)

                = φ^(-1)(y1) ∗ φ^(-1)(y2)   (by the definition of φ^(-1))

Learn more about homomorphism here :-

https://brainly.com/question/6111672

#SPJ11

Write the composite function in the form f(g(x)). [Identify the inner function u= g(x) and the outer function y = f(u).] (Use non-identity functions for fu) and g(x).)
y = cos(sin(x))
(u), 9(x)) =
Find the derivative dy/dx

Answers

Given the function y = cos(sin(x)).The composite function in the form f(g(x)) is:y = f(g(x))y = f(u), where u = g(x).Here, f(u) = cos(u) and g(x) = sin(x)So, f(g(x)) = cos(sin(x)).

Therefore, the inner function is g(x) = sin(x) and the outer function is f(u) = cos(u).To find the derivative of y = cos(sin(x)), we have to use the chain rule of differentiation.Using the chain rule of differentiation, we can say that,dy/dx = dy/du * du/dx.

Where,u = sin(x)So, du/dx = cos(x)Now, dy/du = - sin(u)Putting all the values in the above formula,dy/dx = dy/du * du/dxdy/dx = (-sin(u)) * cos(x)dy/dx = -sin(sin(x))cos(x)Therefore, the required derivative is -sin(sin(x))cos(x).Hence, option C is the correct answer.

To know more about function visit :

https://brainly.com/question/30721594

#SPJ11

Kristina invests a total of $28,500 in two accounts paying 11% and 13% simple interest, respectively. How much was invested in each account if, after one year, the total interest was $3,495.00. A

Answers

Kristina made the investment of $10,500 at 11% and $18,000 at 13% in each account, after one year if the the total interest was $3,495.00.

Let x be the amount invested at 11% and y be the amount invested at 13%.

The sum of the amounts is the total amount invested, which is $28,500.

Therefore, we have:

x + y = 28,500

We are also given that the total interest earned after one year is $3,495.

We can use the simple interest formula:

I = Prt,

where I is the interest,

P is the principal,

r is the interest rate as a decimal,

and t is the time in years. For the 11% account, we have:

I₁ = 0.11x(1) = 0.11x

For the 13% account, we have:

I₂ = 0.13y(1) = 0.13y

The sum of the interests is equal to $3,495, so we have:

0.11x + 0.13y = 3,495

Multiplying the first equation by 0.11, we get:

0.11x + 0.11y = 3,135

Subtracting this equation from the second equation, we get:

0.02y = 360

Dividing both sides by 0.02, we get:

y = 18,000

Substituting this into the first equation, we get:

x + 18,000 = 28,500x = 10,500

Therefore, Kristina invested $10,500 at 11% and $18,000 at 13%.

To know more about investment refer here:

https://brainly.com/question/15105766

#SPJ11

Fill in the blanks with the correct answer. Complete the sentence. For a recipe, Dalal is using 5 cups of flour for 2 cups of water. If she has 15 cups of flour, she should use cups of water.

Answers

For a recipe, Dalal is using 5 cups of flour for 2 cups of water,By taking ratio we get that if she has 15 cups of flour, she should use 6 cups of water.


To solve the given problem, we need to use the ratio of flour to water in the recipe. The ratio of flour to water in the recipe is given as 5 cups of flour to 2 cups of water. In other words, for every 5 cups of flour, we need 2 cups of water.

Using this ratio, we can find out how many cups of water we need for 15 cups of flour. To do this, we need to set up a proportion.
We can write:5 cups of flour/2 cups of water = 15 cups of flour/x cups of water.

Here, we are trying to find x, the number of cups of water needed for 15 cups of flour.

To solve for x, we can cross-multiply:

5 cups of flour x x cups of water = 2 cups of water x 15 cups of flour.

Simplifying this expression, we get:5x = 30.

Dividing both sides by 5, we get:x = 6.

Therefore, Dalal should use 6 cups of water if she has 15 cups of flour.


To know more about ratios click here:

https://brainly.com/question/13419413

#SPJ11

The demand function for a manufacturer's product is p=f(q)=−0.17q+255, where p is the price (in dollars) per unit when q units are demanded (per day). Find the level of production that maximizes the manufacturer's total revenue and determine this revenue. What quantity will maximize the revenue? q= units.

Answers

Given function f(q)=−0.17q+255 is a demand function, which relates price with quantity demanded.  

The revenue of a manufacturer can be calculated as total revenue = price × quantity;

which can be expressed as R(q)= q*p=q*(−0.17q+255)=−0.17q²+255q.

To maximize the revenue, we need to take the derivative of the revenue function R(q) with respect to q and set it equal to zero.

Hence, R'(q) = -0.34q + 255 = 0 Or, 0.34q = 255q = 750

Now, the quantity of the manufacturer that will maximize the revenue is 750 units.

Now, to determine the maximum revenue, substitute this value of q in the revenue function.

Hence, R(q) = -0.17q² + 255q R(750) = -0.17(750)² + 255(750) = 106875 units.

Therefore, the maximum revenue is 106875 units when 750 units are produced.

Learn more about maximization: https://brainly.com/question/25120629

#SPJ11

"
Gym A charges $18 per month plus a $25 fee. Gym B charges $6 per month plus a $97 fee. a. Gym A and B will cost the same at _________________________ months. b. How much will it cost at that time?
"

Answers

a. Gym A and B will cost the same at 11 months.

b. It will cost $223.00 at that time.

Let's calculate the cost of each gym and find out the time at which both gyms will cost the same.

Gym A cost = $18 per month + $25 fee

Gym B cost = $6 per month + $97 fee

Let's find out when the costs of Gym A and Gym B will be the same.18x + 25 = 6x + 97   (where x represents the number of months)18x - 6x = 97 - 2512x = 72x = 6Therefore, Gym A and Gym B will cost the same after 6 months.

Let's put x = 11 months to calculate the cost of both gyms at that time.

Cost of Gym A = 18(11) + 25 = $223.00Cost of Gym B = 6(11) + 97 = $223.00

Therefore, it will cost $223.00 for both gyms at 11 months.

Learn more about cost:https://brainly.com/question/28147009

#SPJ11

Exercise 2(1/2) We can describe a parabola with the following formula: y=a ∗
x∗2+b ∗
x+c Write a Python script which prompts the user for the values of a, b, c,x, and y and then tests whether the point (x,y) lies on the parabola or not. Print out this information accordingly. Hint: check for equality on both sides of the above equation (==). Exercise 2(2/2) Example output: Input a float for ' a ': 1 Input a float for ' b ': 0 Input a float for ' c ': 0 Input a float for ' x ': 4 Input a float for ' y ': 16 The point (4,16) lies on the parabola described by the equation: y=1∗ x∗∗2+0∗x+0

Answers

The Python script above prompts the user for the values of a, b, c, x, and y, and then tests whether the point (x, y) lies on the parabola described by the equation y=ax^2+bx+c. If the point lies on the parabola, the script prints out a message stating this. Otherwise, the script prints out a message stating that the point does not lie on the parabola.

The function is_on_parabola() takes in the values of a, b, c, x, and y, and then calculates the value of the parabola at the point (x, y). If the calculated value is equal to y, then the point lies on the parabola. Otherwise, the point does not lie on the parabola.

The main function of the script prompts the user for the values of a, b, c, x, and y, and then calls the function is_on_parabola(). If the point lies on the parabola, the script prints out a message stating this. Otherwise, the script prints out a message stating that the point does not lie on the parabola.

To run the script, you can save it as a Python file and then run it from the command line. For example, if you save the script as parabola.py, you can run it by typing the following command into the command line:

python parabola.py

This will prompt you for the values of a, b, c, x, and y, and then print out a message stating whether or not the point lies on the parabola.

Visit here to learn more about parabola:

brainly.com/question/29635857

#SPJ11

Acertain standardized test's math scores have a bell-shaped distribution with a mean of 530 and a standard deviation of 114 . Complete parts (a) through (c). (a) What percentage of standardized test scores is between 416 and 644 ? \% (Round to one decimal place as needed.)

Answers

The percentage of standardized test scores that are between 416 and 644 is 68.3%.

To solve this question, first, we need to find the z-scores for the given range of standardized test scores. Then we need to find the area under the standard normal distribution curve between these z-scores and finally, convert that area to a percentage. Let’s go step by step.

The given range is 416 to 644.

We need to find the percentage of standardized test scores that are between these two numbers.

We need to find the z-scores for these numbers using the formula,

z = (x-μ)/σ

Here, x is the test score, μ is the mean, and σ is the standard deviation.

For x = 416,

z = (416-530)/114

= -1.00

For x = 644,z = (644-530)/114 = 1.00

Now we need to find the area under the standard normal distribution curve between z = -1.00 and z = 1.00.

We can do this using the standard normal distribution table or calculator.

Using the standard normal distribution table, we can find that the area to the left of z = -1.00 is 0.1587 and the area to the left of z = 1.00 is 0.8413.

So the area between z = -1.00 and z = 1.00 is,

Area between z = -1.00 and z = 1.00 = 0.8413 – 0.1587 = 0.6826

Finally, we need to convert this area to a percentage. Therefore, the percentage of standardized test scores between 416 and 644 is,

Percentage of scores between 416 and 644 = Area between z = -1.00 and z

= 1.00 × 100

= 0.6826 × 100

= 68.3%

Therefore, 68.3% of standardized test scores are between 416 and 644.

The percentage of standardized test scores that are between 416 and 644 is 68.3%.

To know more about z-scores visit:

brainly.com/question/31871890

#SPJ11

Other Questions
Consider the following. 7x^2y3=8(a) Find y by implicit differentiation.y= (b) Solve the equation explictly for y and differentiate to get y ' in terms of x. y=(c) Check that your solutions to parts (a) and (b) are consistent by substituting the expression for y into your solution for part (a). y= what is von achieved plan Sarasota Company is contemplating an investment costing $173,390. The investment will have a life of 8 years with no salvage value and will produce annual cash flows of $32,500. Click here to view PV tables. What is the approximate internal rate of return associated with this investment? (Use the above table.) (Round answer to 0 decimal places, e.8. 15\%.) Internal rate of return \% Comparing your actions as an Advanced EMT to what a person with similar training would do in the same circumstances is called:A.proximate cause.B.the scope of practice.C.the reasonable person standard.D.lex talionis. a prescription for seroquel 12.5 mg po qhs is received. the smallest dose available in stock is a 25 mg tablet. how many will you dispense for a 90-day supply? From the lessor's perspective, how does an operating lease differ from a sales-type lease? Why might we record profit when recording a sales-type lease? Be sure to provide examples. What are hypervisors, guest and host machines? Draw a diagram to illustrate your answer. (20 marks) Which of the following information is needed to utilize the gross profit method? (Select all that apply.) Two moles of thiosulfate reacts with one mole of triiodide according to the equation (Note: triiodide is a reactant while iodide is a product in the reaction described below)2 S2O32- + I3- 3 I-1 + S4O62-One millimeter (1.00 mL) of 0.02 M thiosulfate is consumed in 41 sec.a) Calculate the moles of thiosulfate.b) Calculate the moles of triiodide that will react in (a).c) Deteine the rate of triiodide consumption in mol/sec. wilson's fourteen points were accepted as a basis for the peace treaty following world war i. true false Based on the article, which elements of the painting seem to be historically accurate for the 1682 scene being depicted? The faces of the settlers and Native Americans The buildings in the background The clothing and personal objects of the Native Americans The clothing of William Penn and the other colonists None of these visual elements are authentic for 1682. According to your textbook the process of persuasion refers to all of the following EXCEPT: creating beliefs influencing attitudes reinforcing values demonstrating processes The freezing point of water: A. is 500^{\circ} \mathrm{C} B. does not exist C. decreases with increasing pressure D. decreases with decreasing pressure According to a recent survey. T3Yh of all tamilies in Canada participatod in a Hviloween party. 14 families are seiected at random. What is the probabity that wix tamilies participated in a Halloween paty? (Round the resut to five decimal places if needed) After deducting the standard exemption of \( \$ 12,400 \), what is the taxable earnings amount? none of these \( \$ 51,800 \) \( \$ 50.000 \) \( \$ 47,600 \) Fill In The Blank, Sharon experiences mild manic episodes that alternate with major depressive episodes over the course of time. She would be diagnosed with _____ disorder. Which of the following statements reflects planter paternalism?"Compared to the working poor in Europe, American slaves live and work in superior conditions.""Slavery leads to conflict between the wealthy and the poor, the white and the black. It must be ended to achieve the vision of the Founding Fathers.""Slavery is a moral evil, yet a necessary one. The power to bring about its end rests in no earthly authority.""The black man poses a threat to the white man, so he must be carefully restrained." Why is it good to be skeptical of knowledge that is obtained by relying on experts / authority figures (pick one)?A). Experts might be wrongB). The expert may be voicing their opinion only, and not a factC). The supposed "expert" might not be a real expert at all!D). All of the above are good reasons to be skeptical of knowledge obtained by relying on experts / authority 5. what is the purpose of the example of sameer bhatia, who found a bone marrow donor through social networking (para. 17)? do you find it persuasive, or is it too exceptional? If attended college or trade school, it is suggested to includemy grade point average (GPA), if it is__________ or higher.