300 students were served about their favorite Subject the results are shown on the table below language arts 15 math 24 psi and 33 social studies 21 elective seven how many students prefer science then math

Answers

Answer 1

The table shows that 15 students prefer language arts, 24 prefer math, 33 prefer science, 21 prefer social studies, and 7 prefer electives. To find out how many students prefer science more than math, we can subtract the number of students who prefer math from the number of students who prefer science. This gives us 33 - 24 = 9 students.

It is important to note that this is not the total number of students who prefer science. Some students may have chosen science as their second favorite subject, or they may have not chosen any of the options listed in the table. However, it is clear that more students prefer science than math, based on the data in the table.

There are a number of possible reasons why more students prefer science than math. One possibility is that science is more interesting to students. Science can be used to explain the world around us, and it can also be used to solve problems. Math, on the other hand, is often seen as more abstract and less relevant to everyday life.

Another possibility is that students are better at science than math. Science is often based on observation and experimentation, which are skills that come naturally to many students. Math, on the other hand, is often based on abstract concepts and rules, which can be more difficult for some students to grasp.

Whatever the reason, it is clear that more students prefer science than math. This is something that educators should keep in mind when planning their lessons and activities. By making science more engaging and relevant to students, we can help them to develop a lifelong love of learning.

for more such questions on possibility

https://brainly.com/question/25839839

#SPJ8


Related Questions

In Australia, invasive cane toads (Bufo marinus) are
highly toxic to native snakes. Snakes are gape-limited predators,
so the arrival of toads may exert selection on snake morphology,
which is quantif

Answers

In Australia, the introduction of invasive cane toads (Bufo marinus) has had a significant impact on native snake populations. Cane toads are highly toxic to snakes, and their presence has led to selective pressures on snake morphology.

Snakes are gape-limited predators, meaning that the size of their mouth opening limits the size of prey they can consume. With the arrival of cane toads, which have large and toxic glands, snakes face challenges in capturing and consuming them. This has created a selective environment where snakes with certain morphological characteristics are more successful in dealing with the new prey item.

The selection pressure on snake morphology can be quantified through various measures. Researchers may examine traits such as jaw size, head shape, or the presence of specialized structures that aid in dealing with toxic prey. By comparing snake populations before and after the introduction of cane toads, they can identify any changes in these morphological traits.

For example, if snakes with larger jaws or more robust skulls have a higher survival or reproductive advantage when preying on cane toads, over time, the proportion of snakes with these traits may increase in the population. This shift in snake morphology would indicate that natural selection is acting on these traits in response to the invasive species.

Quantifying the extent of this selection pressure requires careful observation and measurement of morphological characteristics in snake populations. By studying multiple populations across different regions and time periods, researchers can assess the consistency and magnitude of the selective pressures imposed by cane toads.

Understanding the effects of cane toads on snake morphology is crucial for assessing the long-term impacts of invasive species on native wildlife. It provides insights into the adaptive responses of snakes and helps conservationists develop strategies to mitigate the negative consequences of the toad invasion.

In conclusion, the arrival of invasive cane toads in Australia has exerted selective pressures on snake morphology. By studying changes in morphological traits and quantifying the extent of selection, researchers can gain a better understanding of how snakes are adapting to the challenges posed by these toxic invaders.

Learn more about morphology here

https://brainly.com/question/29801306

#SPJ11

A simple random sample from a population with a normal distribution of 100 body temperatures has x = 98.40°F and s=0.61°F. Construct a 90% confidence interval estimate of the standard deviation of body temperature of all healthy humans. Click the icon to view the table of Chi-Square critical values. **** °F<<°F (Round to two decimal places as needed.) A survey of 300 union members in New York State reveals that 112 favor the Republican candidate for governor. Construct the 98% confidence interval for the true population proportion of all New York State union members who favor the Republican candidate. www OA. 0.304

Answers

A 90% confidence interval estimate of the standard deviation of body temperature of all healthy humans is done below:

Given:

Sample size(n) = 100

Sample mean(x) = 98.40°

Sample standard deviation(s) = 0.61°F

Level of Confidence(C) = 90% (α = 0.10)

Degrees of Freedom(df) = n - 1 = 100 - 1 = 99

The formula for the confidence interval estimate of the standard deviation of the population is:((n - 1)s²)/χ²α/2,df < σ² < ((n - 1)s²)/χ²1-α/2,df

Now we substitute the given values in the formula above:((n - 1)s²)/χ²α/2,df < σ² < ((n - 1)s²)/χ²1-α/2,df((100 - 1)(0.61)²)/χ²0.05/2,99 < σ² < ((100 - 1)(0.61)²)/χ²0.95/2,99(99)(0.3721)/χ²0.025,99 < σ² < (99)(0.3721)/χ²0.975,99(36.889)/χ²0.025,99 < σ² < 36.889/χ²0.975,99

Using the table of Chi-Square critical values, the values of χ²0.025,99 and χ²0.975,99 are 71.42 and 128.42 respectively.

Finally, we substitute these values in the equation above to obtain the 90% confidence interval estimate of the standard deviation of body temperature of all healthy humans:36.889/128.42 < σ² < 36.889/71.42(0.2871) < σ² < (0.5180)Taking square roots on both sides,0.5366°F < σ < 0.7208°F

Hence, the 90% confidence interval estimate of the standard deviation of body temperature of all healthy humans is given as [0.5366°F, 0.7208°F].

To know more about standard deviation  visit:

https://brainly.com/question/29115611

#SPJ11

In how many ways can the letters of the word SASKATOON be permuted? O A. 9! 9 Dalo 6111 O c. 2121216! 9 22 23 91 (21)³ O E.

Answers

There are 45,360 ways to permute the letters of the word "SASKATOON" considering the repeated Letters.

The number of ways the letters of the word "SASKATOON" can be permuted, we need to calculate the total number of permutations considering the repeated letters.

The word "SASKATOON" has a total of 9 letters. Among them, the letter 'S' appears twice, the letter 'A' appears twice, and the letter 'O' appears twice. The remaining letters 'K', 'T', and 'N' are unique.

To calculate the number of permutations, we can use the concept of permutations with repetition. The formula for permutations with repetition is:

n! / (n1! * n2! * n3! * ... * nk!)

Where:

n is the total number of objects (9 in this case)

n1, n2, n3, ... are the repetitions of each object ('S', 'A', 'O' in this case)

Applying the formula to the word "SASKATOON", we have:

9! / (2! * 2! * 2!)

Calculating this expression:

9! = 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 = 362,880

2! = 2 * 1 = 2

Substituting the values into the formula:

362,880 / (2 * 2 * 2) = 362,880 / 8 = 45,360

Therefore, there are 45,360 ways to permute the letters of the word "SASKATOON" considering the repeated letters.

The correct answer is: A. 45,360

For more questions on Letters.

https://brainly.com/question/29915499

#SPJ8

test the series for convergence or divergence using the alternating series test. [infinity] (−1)n 7nn n! n = 1

Answers

The given series is as follows:[infinity] (−1)n 7nn n! n = 1We need to determine if the series is convergent or divergent by using the Alternating Series Test. The Alternating Series Test states that if the terms of a series alternate in sign and are decreasing in absolute value, then the series is convergent.

The sum of the series is the limit of the sequence formed by the partial sums.The given series is alternating since the sign of the terms changes in each step. So, we can apply the alternating series test.Now, let’s calculate the absolute value of the series:[infinity] |(−1)n 7nn n!| n = 1Since the terms of the given series are always positive, we don’t need to worry about the absolute values. Thus, we can apply the alternating series test.

To know more about convergent visit :-

https://brainly.com/question/29258536

#SPJ11

(a) State the Central Limit Theorem. (b) Consider the random variable Y with uniform distribution: f(y) = - {017-201 if 0₁ ≤ y ≤ 0₂ elsewhere = Show that the moment generating function E(ext)

Answers

The Central Limit Theorem states that the sum or average of a large number of independent and identically distributed random variables tends to follow a normal distribution, regardless of the shape of the original distribution.

This theorem is widely used in statistics and probability theory.The moment generating function (MGF) is a function that uniquely determines the probability distribution of a random variable.

To find the MGF for the random variable Y with a uniform distribution, we can use the formula:

M_Y(t) = E(e^(tY)) = ∫(e^(ty) * f(y)) dy

where f(y) is the probability density function of Y.

For the given uniform distribution with f(y) = - {017-201 if 0₁ ≤ y ≤ 0₂ elsewhere, we can split the integral into two parts:

M_Y(t) = ∫(e^(ty) * (-0.17)) dy, for 0₁ ≤ y ≤ 0₂

        + ∫(e^(ty) * 0) dy, elsewhere

Simplifying the first integral, we have:

M_Y(t) = -0.17 * ∫(e^(ty)) dy, for 0₁ ≤ y ≤ 0₂

Integrating e^(ty) with respect to y, we get:

M_Y(t) = -0.17 * [(e^(ty)) / t]₁₀₁

Substituting the limits of integration, we have:

M_Y(t) = -0.17 * [(e^(t0₂) - e^(t0₁)) / t]

Simplifying further, we obtain the moment generating function E(ext):

M_Y(t) = -0.17 * [(e^(t0₂) - e^(t0₁)) / t]

To know more about Central Limit Theorem refer here:

https://brainly.com/question/30115013#

#SPJ11

calculate the total length of the circle =6sin() as an integral in polar coordinates.

Answers

To calculate the total length of the curve defined by r = 6sin(θ) in polar coordinates, we can use the arc length formula for polar curves.

The formula for the arc length of a polar curve is given by the integral of sqrt(r^2 + (dr/dθ)^2) dθ, where r is the radius and dr/dθ is the derivative of r with respect to θ.

In this case, we have r = 6sin(θ). We can find dr/dθ by taking the derivative of r with respect to θ, which gives us dr/dθ = 6cos(θ).

Substituting these values into the arc length formula, we have the integral from θ = 0 to θ = 2π of sqrt((6sin(θ))^2 + (6cos(θ))^2) dθ.

Simplifying the integrand, we have sqrt(36sin^2(θ) + 36cos^2(θ)) = sqrt(36) = 6.

Therefore, the total length of the curve is given by the integral of 6 dθ from θ = 0 to θ = 2π, which evaluates to 6(2π - 0) = 12π units.

To know more about polar coordinates click here: brainly.com/question/31904915

#SPJ11

determine which function produces the same graph as f (x) = (8 superscript two-thirds x baseline) (16 superscript one-half x baseline). f(x) = 4x f(x) = 42x f(x) = 83x f(x) = 162x

Answers

The given function is f (x) = (8 ²/³x) (16 ½x). We need to determine which function produces the same graph as the given function.Let's solve this problem. To solve this problem, we have to determine the main answer. The main answer is f(x) = 42x. This function produces the same graph as the given function.

Given function is f (x) = (8 ²/³x) (16 ½x)Now, we will express the given function as f (x) = 2 ²/³ . 2 ½ . (2 ³x) (2 ⁴x)Therefore, f (x) = 2^(²/³ + ½ + 3x + 4x) = 2^(11/6 + 7x)So, the given function f (x) = (8 ²/³x) (16 ½x) is equivalent to the function 2^(11/6 + 7x). Now, let's check the options which function produces the same graph as f(x).Option a) f(x) = 4xWhen we substitute x = 1 in both functions, f(1) = 16 for the given function and f(1) = 4 for function f(x) = 4x.So, it is clear that this function does not produce the same graph as f(x).Option b) f(x) = 42xWhen we substitute x = 1 in both functions, f(1) = 512 for the given function and f(1) = 42 for function f(x) = 42x.So, it is clear that this function produces the same graph as f(x).Option c) f(x) = 83xWhen we substitute x = 1 in both functions, f(1) = 1024 for the given function and f(1) = 83 for function f(x) = 83x.So, it is clear that this function does not produce the same graph as f(x).Option d) f(x) = 162xWhen we substitute x = 1 in both functions, f(1) = 2048 for the given function and f(1) = 162 for function f(x) = 162x.

So, it is clear that this function does not produce the same graph as f(x).Thus, the main answer is f(x) = 42x. The explanation of the problem is as follows: The given function f (x) = (8 ²/³x) (16 ½x) is equivalent to the function 2^(11/6 + 7x). The function that produces the same graph as f(x) is f(x) = 42x. The remaining functions do not produce the same graph as f(x).

To know more about determine visit:

https://brainly.com/question/29898039

#SPJ11

Answer:its B

Step-by-step explanation:

i did the test

This test: 14 point(s) possible This question: 1 point(s) possible Submit test Suppose a geyser has a mean time between eruptions of 72 minutes. Let the interval of time between the eruptions be normally distributed with standard deviation 29 minutes. Complete parts (a) through (e) below. The probability that the mean of a random sample of 33 time intervals is more than 84 minutes is approximately 0.0087 (Round to four decimal places as needed.) (d) What effect does increasing the sample size have on the probability? Provide an explanation for this result. Fill in the blanks below. If the population mean is less than 84 minutes, then the probability that the sample mean of the time between eruptions is greater than 84 minutes decreases because the variability in the sample mean decreases as the sample size increases. (e) What might you conclude if a random sample of 33 time intervals between eruptions has a mean longer than 84 minutes? Select all that apply. A. The population mean may be greater than 72. B. The population mean is 72, and this is just a rare sampling. C. The population mean must be more than 72, since the probability is so low. D. The population mean must be less than 72, since the probability is so low. E. The population mean cannot be 72, since the probability is so low. F. The population mean is 72, and this is an example of a typical sampling result. G. The population mean may be less than 72. 0000

Answers

The possible options are:Option A. The population mean may be greater than 72.Option G. The population mean may be less than 72.

Data at Hand: The standard deviation is 29 minutes, the number of time intervals in a random sample is 33, and the mean time between eruptions is 72 minutes. How the size of the sample affects the probability Solution: We are aware that the following is the sample mean: The distribution of the sample means can be approximated by the normal distribution with the following parameters for sample sizes of n greater than 30: = Mean = 72 minutes = Standard deviation of the sample = $frac29sqrt33 minutes

The sample's mean duration is x = 72 minutes. The sample means have a standard deviation of x times $fracsqrtn times $fracsqrt33 minutes. The standard normal random variable associated with x, the sample mean of n observations chosen at random from a population with a mean and a standard deviation, is Z = $fracx - fracsqrtn$. a) For a random sample of 33 time intervals, let x be the sample mean time between eruptions. This sample mean's Z-score can be calculated as follows: The probability that a Z-score is greater than 3.1213 is 0.00087 from the standard normal table. (Z = $fracx - fracsqrtn$= $frac84 - 72 frac29sqrt33$= 3.1213

The probability that the mean of a random sample consisting of 33 time intervals is greater than 84 minutes is therefore approximately 0.0087. (d) Effect of increasing the sample size on probability: The standard deviation of the sample mean decreases as the sample size grows. This decreases the spread of the example implies around the populace mean and thus lessens the fluctuation of the example implies.

As a result, the probability of obtaining sample means that are further from the population mean decreases as the sample size increases.(e) We can conclude that the population mean may be greater than 72 minutes if a random sample of 33 intervals between eruptions has a mean time greater than 84 minutes. Subsequently, the potential choices are: Choice A. The populace mean might be more prominent than 72.Option G. The populace mean might be under 72.

To know more about standard deviation refer to

https://brainly.com/question/13498201

#SPJ11

Translate the following phrase into an algebraic expression.

Answers

The algebraic expression is '4d' for the phrase "The product of 4 and the depth of the pool."

Expressing algebraically means to express it concisely yet easily understandable using numbers and letters only. Most of the Mathematical statements are expressed algebraically to make it easily readable and understandable.

Here, we are asked to represent the phrase "The product of 4 and the depth of the pool" algebraically.

The depth of the pool is an unknown quantity. So let it be 'd'.

Then product of two numbers means multiplying them.

We write the above statement as '4  x d' or simply, '4d' ignoring the multiplication symbol in between.

The question is incomplete. Find the complete question below:

Translate the following phrase into an algebraic expression. Use the variable d to represent the unknown quantity. The product of 4 and the depth of the pool.

To know more about algebraically visit-

brainly.com/question/28645373

#SPJ11

find the indefinite integral. (remember to use absolute values where appropriate. use c for the constant of integration.) x^2 / x − 5 dx

Answers

The indefinite integral of x^2 / (x - 5) dx is x + 5 ln|x - 5| + c.

What is the indefinite integral of x^2 / (x - 5) dx?

To find the indefinite integral of x^2 / (x - 5) dx, we can use the method of partial fractions.

First, we need to decompose the fraction:

x ² / (x - 5) = A + B / (x - 5)

To find the values of A and B, we can multiply both sides by (x - 5) and equate the coefficients of like terms:

x ² = A(x - 5) + B

Expanding and collecting like terms:

x ² = Ax - 5A + B

Now, we can equate the coefficients of x^2, x, and the constant term separately:

For the coefficient of x ²:1 = A

For the coefficient of x:0 = -5A + B

Solving these equations, we find A = 1 and B = 5.

Now, we can rewrite the integral as:

∫(x ² / (x - 5)) dx = ∫(1 + 5 / (x - 5)) dx

Integrating each term separately:

∫(1 + 5 / (x - 5)) dx = ∫1 dx + ∫(5 / (x - 5)) dx

The integral of 1 with respect to x is simply x, and the integral of (5 / (x - 5)) dx can be found by substituting u = x - 5, which gives us du = dx:

∫(5 / (x - 5)) dx = 5 ∫(1 / u) du = 5 ln|u| + c

Substituting back x - 5 for u:

5 ln|x - 5| + c

Therefore, the indefinite integral of x^2 / (x - 5) dx is:

x + 5 ln|x - 5| + c, where c is the constant of integration.

Learn more about indefinite integral

brainly.com/question/28036871

#SPJ11

Applied (Word) Problems NoteSheet
Consecutive Integers
Consecutive numbers (or more properly, consecutive integers) are integers nrand ngsuch that
/h - nl = I, i.e., IJlfollows immediately after 17,.
Given two consecutive numbers, one must be even and one must be odd. Since the sum of an
even number and an odd number is always odd, the sum of two consecutive numbers (and, in
fact, of any number of consecutive numbers) is always odd.
Consecutive integers are integers that follow each other in order. They have a difference of 1
between every two numbers.
If n is an integer, then n, n+1, and n+2 wi II be consecutive integers.
Examples:
1,2,3,4,5
-3,-2,-1,0,1,2
1004, 1005, 1006

Answers

The concept of consecutive integers is explained as follows:

Consecutive numbers, or consecutive integers, are integers that follow each other in order. The difference between any two consecutive numbers is always 1. For example, the consecutive numbers starting from 1 would be 1, 2, 3, 4, 5, and so on. Similarly, the consecutive numbers starting from -3 would be -3, -2, -1, 0, 1, 2, and so on.

It is important to note that if we have a consecutive sequence of integers, one number will be even, and the next number will be odd. This is because the parity (evenness or oddness) alternates as we move through consecutive integers.

Furthermore, the sum of two consecutive numbers (and, in fact, the sum of any number of consecutive numbers) is always an odd number. This is because when we add an even number to an odd number, the result is always an odd number.

To generate a sequence of consecutive integers, we can start with any integer n and then use n, n+1, n+2, and so on to obtain consecutive integers. For example, if n is an integer, then n, n+1, and n+2 will be consecutive integers.

Here are some examples of consecutive integers:

- Starting from 1: 1, 2, 3, 4, 5, ...

- Starting from -3: -3, -2, -1, 0, 1, 2, ...

- Starting from 1004: 1004, 1005, 1006, 1007, ...

To know more about integers visit-

brainly.com/question/30902406

#SPJ11

The SUBSET SUM problem asks to decide whether a finite set S of positive integers has a subset T such that the elements of T sum to a positive integer t. (a) Is (S,t) a yes-instance when the set S is given by S={2,3,5,7,8} and t=19 ? Prove your result. (b) Why is a brute force algorithm not feasible for larger sets S (c) Explain in your own words why the dynamic programming solution to SUBSET SUM given in https://www . cs. dartmouth . edu/ deepc/Courses/S19/lecs/lec6.pdf is not a polynomial time algorithm.

Answers

(a) To determine if (S,t) is a yes-instance for S={2,3,5,7,8} and t=19, we need to check if there exists a subset of S whose elements sum to 19. In this case, we can choose the subset T={2,7,10} where the elements sum to 19. Thus, (S,t) is a yes-instance.

(b) A brute force algorithm for the SUBSET SUM problem involves checking all possible subsets of S and calculating their sums to see if any sum equals t. However, the number of possible subsets grows exponentially with the size of S, making the algorithm impractical for larger sets. For example, if S has n elements, the number of subsets is 2^n, which becomes computationally infeasible for large values of n.
(c) The dynamic programming solution presented in the provided link is not a polynomial time algorithm because it still has to consider all possible subsets of S. Although it improves the efficiency by using memoization to avoid redundant calculations, the algorithm's time complexity is still exponential in the worst case. It explores all possible combinations of elements in S to determine if there exists a subset sum equal to t, resulting in a runtime that grows exponentially with the size of S. Thus, it cannot be classified as a polynomial time algorithm.

Learn more about subset here
https://brainly.com/question/31739353



#SPJ11

How
to solve with explanation of how to?
Nationally, registered nurses earned an average annual salary of $69,110. For that same year, a survey was conducted of 81 California registered nurses to determine if the annual salary is different t

Answers

Based on the survey of 81 California registered nurses, a hypothesis test can be conducted to determine if their annual salary is different from the national average of $69,110 using appropriate calculations and statistical analysis.

To determine if the annual salary of California registered nurses is different from the national average, you can conduct a hypothesis test. Here's how you can approach it:

1: State the hypotheses:

- Null Hypothesis (H0): The average annual salary of California registered nurses is equal to the national average.

- Alternative Hypothesis (Ha): The average annual salary of California registered nurses is different from the national average.

2: Choose the significance level:

- This is the level at which you're willing to reject the null hypothesis. Let's assume a significance level of 0.05 (5%).

3: Collect the data:

- The survey has already been conducted and provides the necessary data for 81 California registered nurses' annual salaries.

4: Calculate the test statistic:

- Compute the sample mean and sample standard deviation of the California registered nurses' salaries.

- Calculate the standard error of the mean using the formula: standard deviation / sqrt(sample size).

- Compute the test statistic using the formula: (sample mean - population mean) / standard error of the mean.

5: Determine the critical value:

- Based on the significance level and the degrees of freedom (n - 1), find the critical value from the t-distribution table.

6: Compare the test statistic with the critical value:

- If the absolute value of the test statistic is greater than the critical value, reject the null hypothesis.

- If the absolute value of the test statistic is less than the critical value, fail to reject the null hypothesis.

7: Draw a conclusion:

- If the null hypothesis is rejected, it suggests that the average annual salary of California registered nurses is different from the national average.

- If the null hypothesis is not rejected, it indicates that there is not enough evidence to conclude a difference in salaries.

Note: It's important to perform the necessary calculations and consult a t-distribution table to find the critical value and make an accurate conclusion.

To know more about hypothesis test refer here:

https://brainly.com/question/17099835#

#SPJ11

A random variable X is distributed according to a normal law
with variance 4. We know that P(X ≤ 2) = 0.8051.
a) Calculate the mean of the variable X.
b) Calculate P(0.18 ≤ X ≤ 2.28)

Answers

Given that a random variable X is distributed according to a normal law with variance 4. We know that P(X ≤ 2) = 0.8051.The probability distribution function of the standard normal distribution.

φ(x)=1/√(2π) e^((-1/2)x^2)

Let the given normal distribution be

N(μ, σ^2), then we need to convert the distribution into standard normal distribution i.e. N(0, 1) by using the formula Z=(X-μ)/σa)

Calculate the mean of the variable XWe know that

P(X ≤ 2) = 0.8051i.e. P(Z ≤ (2 - μ)/σ) = 0.8051

Using normal tables we get,0.8051 corresponds to

Z = 0.84

Therefore, (2 - μ)/σ = 0.84..........(1)Also, Z = (X - μ)/σX = σZ + μPut Z = 0

in the above equation,X = σ * 0 + μi.e. X = μSo, substituting μ = X in equation (1)

0.84 = (2 - X)/2X = 2 - 0.84 * 2X = 0.32

To know more about variance visit:

https://brainly.com/question/31432390

#SPJ11

The test scores for 8 randomly chosen students is a statistics class were (51, 93, 93, 80, 70, 76, 64, 79). What is the 33rd percentile for the sample of students? 079.7 68.5 O 72.0 71.9

Answers

The 33rd percentile of the sample. The answer is 70.

We have a sample of 8 scores: (51, 93, 93, 80, 70, 76, 64, 79).

The first step to finding the 33rd percentile is to put the data in order.

This gives us: (51, 64, 70, 76, 79, 80, 93, 93).Next, we calculate the rank of the 33rd percentile.

To do this, we use the following formula:

Rank = (percentile/100) x n

where percentile = 33, n = 8Rank = (33/100) x 8 = 2.64 (rounded to 3)

Therefore, the 33rd percentile is the score that is ranked 3rd.

From the ordered data, we see that the score ranked 3rd is 70.

Hence, the answer is 70

To determine the 33rd percentile of a sample of 8 scores (51, 93, 93, 80, 70, 76, 64, 79), we use the formula Rank = (percentile/100) x n. The score ranked 3rd in the ordered data is 70, which is therefore the 33rd percentile of the sample. The answer is 70.

To know more about percentile visit:

brainly.com/question/1594020

#SPJ11

the histograms below shows the randomization test results of 1,000 and 100,000 randomizations showing the distribution of r's. how was each randomization done?

Answers

In general, randomization tests involve permuting or shuffling the data in order to create a null distribution under the assumption of no relationship between variables.

This is typically done by randomly reassigning the values of one variable while keeping the other variable fixed, then calculating the test statistic (in this case, the correlation coefficient "r") based on the shuffled data.

This process is repeated many times to create the distribution of the test statistic under the null hypothesis. The resulting histogram shows the frequency or density of the test statistic values obtained from the randomizations. The number of randomizations performed can vary depending on the study design and desired precision.

To know more about coefficient visit-

brainly.com/question/14524005

#SPJ11

A bolt manufacturer is using a hypothesis test with a = 0.02 to see if their
0.75 cm diameter bolts are being manufactured properly. The goal is to have the
average bolt diameter be 0.75 ‡ 0.007 cms, Based on past experience, they take the
population standard deviation of the 0.75 cm bolts to be 0.007 cm. They wish to have a
power of 0.92.

a. All specifications being equal, suppose they decide they need a power of 0.98
Will the necessary sample size be greater, less than, or equal to that computed in
part a? Briefly explain your answer.

b. Suppose they decide that the power can be 0.92 (as in part a), but the test should
be conducted using a = 0.01. All other inputs being equal, will the necessary
sample size be greater, less than, or equal to that computed in part a. Briefly
explain your answer.

Answers

The necessary sample size will be greater than the one calculated in part a.

a. When the power is increased from 0.92 to 0.98, the required sample size increases. Since the sample size must be larger to achieve the same level of accuracy for a higher power value, this is the case.

Therefore, the necessary sample size will be greater than the one calculated in part a.

A high power value necessitates a larger sample size in order to achieve the same level of accuracy as a low power value.

Hence, as the power value increases, the sample size required also increases.

b. The required sample size will be greater than the one calculated in part a when a=0.01 and power=0.92.

The sample size required for hypothesis testing is inversely proportional to the square of the critical value.

When the significance level is reduced from 0.02 to 0.01, the critical value increases by a factor of approximately 1.3. As a result, the sample size increases since the required sample size is inversely proportional to the square of the critical value.

Therefore, the necessary sample size will be greater than the one calculated in part a.

To know more about sample size visit:

https://brainly.in/question/26985448

#SPJ11

Please help immediately before 9 pm.
Using data below, calculate the bias based on using the
naive forecast method
Week Time Series Value
1 13
2 19
3 8
4 14
Round number to 1 decimal place

Answers

The bias based on the naive forecast method for the given data is 2.0.

To calculate the bias using the naive forecast method, we first need to calculate the average of the time series values. The formula for the naive forecast is simply taking the last observed value as the forecast for the next period.

The time series values given are 13, 19, 8, and 14. To find the average, we sum up these values and divide by the number of values:

Average = (13 + 19 + 8 + 14) / 4

= 54 / 4

= 13.5

Next, we take the last observed value, which is 14, as the forecast for the next period.

Finally, we calculate the bias by subtracting the average from the forecast:

Bias = Forecast - Average

= 14 - 13.5

= 0.5

Rounding the bias to 1 decimal place, we get a bias of 0.5, which can also be expressed as 2.0 when rounded to the nearest whole number.

Therefore, the bias based on the naive forecast method for the given data is 2.0.

Learn more about naive forecast method here: brainly.com/question/31580569

#SPJ11

Suppose is analytic in some region containing B(0:1) and (2) = 1 where x1 = 1. Find a formula for 1. (Hint: First consider the case where f has no zeros in B(0; 1).) Exercise 7. Suppose is analytic in a region containing B(0; 1) and) = 1 when 121 = 1. Suppose that has a zero at z = (1 + 1) and a double zero at z = 1 Can (0) = ?

Answers

h(z) = g(z) for all z in the unit disk. In particular, h(0) = g(0) = -1, so 1(0) cannot be 1.By using the identity theorem for analytic functions,  

We know that if two analytic functions agree on a set that has a limit point in their domain, then they are identical.

Let g(z) = i/(z) - 1. Since i/(z)1 = 1 when |z| = 1, we can conclude that g(z) has a simple pole at z = 0 and no other poles inside the unit circle.

Suppose h(z) is analytic in the unit disk and agrees with g(z) at the zeros of i(z). Since i(z) has a zero of order 2 at z = 1, h(z) must have a pole of order 2 at z = 1. Also, i(z) has a zero of order 1 at z = i(1+i), so h(z) must have a simple zero at z = i(1+i).

Now we can apply the identity theorem for analytic functions. Since h(z) and g(z) agree on the set of zeros of i(z), which has a limit point in the unit disk, we can conclude that h(z) = g(z) for all z in the unit disk. In particular, h(0) = g(0) = -1, so 1(0) cannot be 1.

to learn more about circle click here :

brainly.com/question/1110212

#SPJ4

(6) The scores on a test have a normal distribution with a mean of 60 and standard deviation of 10. (a) What is the probability that a randomly selected student will score (i) More than 75? (3 marks)

Answers

The probability that a randomly selected student will score more than 75 is 0.0668 (or 6.68%). Hence, option (i) is 0.0668.

Given that the scores on a test have a normal distribution with a mean of 60 and a standard deviation of 10.

We have to find the probability that a randomly selected student will score more than 75.

Using the standard normal distribution table, the z-score for 75 is:z = (x - μ)/σz = (75 - 60) / 10z = 1.5

Now, P(X > 75) = P(Z > 1.5)From the standard normal distribution table, we can find the probability corresponding to a z-score of 1.5.

Using the table, we get:

P(Z > 1.5) = 0.0668

Therefore, the probability that a randomly selected student will score more than 75 is 0.0668 (or 6.68%).

Hence, option (i) is 0.0668.

Know more about probability here:

https://brainly.com/question/251701

#SPJ11

Please answer the question below
Jump to level 1 Suppose the mean height in inches of all 9th grade students at one high school is estimated. The population standard deviation is 6 inches. The heights of 8 randomly selected students

Answers

The required probability that the mean height of the sample is within 2 inches of the population mean is approximately 0.649.

Suppose the mean height in inches of all 9th-grade students at one high school is estimated. The population standard deviation is 6 inches. The heights of eight randomly selected students are taken. Let X be the mean height of the eight randomly selected students.

Then, X follows a normal distribution with mean μX and standard deviation σX, given by:

μX = μ = Population mean = Mean height of 9th-grade students = UnknownσX = σ/√n = 6/√8 = 2.12 inches.

Here, n = 8 is the sample size.

We need to find the probability that the mean height of the sample is within 2 inches of the population mean i.e.[tex]P(μ - 2 ≤ X ≤ μ + 2) = P((μ - μX)/σX ≤ (2 - μ + μX)/σX) - P((μ - μX)/σX ≤ (-2 - μ + μX)/σX)P(-0.94 ≤ Z ≤ 0.94) - P(Z ≤ -2.94) ≈ 0.651 - 0.002 = 0.649[/tex]

Note: Here, we have used the standard normal distribution table to calculate the probability of Z-score.

To know more about probability visit:

https://brainly.com/question/31828911

#SPJ11

You have a standard deck of cards. Each card is worth its face
value (i.e., 1 = $1, King = $13)
a-) What is the expected value of drawing two cards with
replacement (cards are placed back into the dec

Answers

Given that a standard deck of cards has 52 cards, and the face value of each card is as follows:

Ace is worth 1$,King is worth 13$,Queen is worth 12$,Jack is worth 11$,10 through 2 is worth their respective face value.

From the given information, the expected value of drawing two cards with replacement (cards are placed back into the deck) can be calculated as follows:

Expected value of the first card drawn = (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13) / 13 = 7

Expected value of the second card drawn = (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13) / 13 = 7

The expected value of the sum of two cards drawn is the sum of the expected value of the first card and

the expected value of the second card, which is:Expected value of the sum of two cards drawn = 7 + 7 = 14

Therefore, the expected value of drawing two cards with replacement from a standard deck of cards is $14.

To know more about expected value visit

https://brainly.com/question/28197299

#SPJ11

please answer and provide an explanation.
A(n) a refers to the result obtained when a decision alternative is chosen and a chance event occurs. a. outcome b. node c. state of nature Od. payoff table

Answers

The term that refers to the result obtained when a decision alternative is chosen and a chance event occurs is "outcome."

In decision analysis and decision theory, an outcome represents the result or consequence that occurs when a particular decision alternative is chosen and a chance event takes place. It is the outcome that follows the interaction between the decision maker's choice and the uncertain elements or events in the environment.

An outcome can be either a positive or negative consequence and may have associated values or utilities that measure the desirability or impact of that outcome. Outcomes are crucial in decision-making processes as they help evaluate the potential outcomes of different decision alternatives and assess their overall desirability or risk.

In decision analysis, an outcome represents the result or consequence that arises when a decision alternative is chosen and a chance event takes place. It plays a vital role in assessing the desirability and risks associated with different decision options.

To know more about outcome visit :

https://brainly.com/question/8090596

#SPJ11

A survey of 2,150 adults reported that 52% watch news videos. Complete parts (a) through (c) below. a. Suppose that you take a sample of 50 adults. If the population proportion of adults who watch news videos is 0.52 , what is the probability that fewer than half in your sample will watch news videos? The probability is that fewer than half of the adults in the sample will watch news videos. (Round to four decimal places as needed.) a. Suppose that you take a sample of 50 adults. If the population proportion of adults who watch news videos is 0.52 , what is the probability that fewer than half in your sample will watch news videos? The probability is .3897 that fewer than half of the adults in the sample will watch news videos. (Round to four decimal places as needed.) b. Suppose that you take a sample of 250 adults. If the population proportion of adults who watch news videos is 0.52 , what is the probability that fewer than half in your sample will watch news videos? The probability is that fewer than half of the adults in the sample will watch news videos. (Round to four decimal places as needed.)

Answers

The probability that fewer than half in your sample will watch news videos is 0.0951 or 0.0951. (Round to four decimal places as needed.)

The probability is that fewer than half of the adults in the sample will watch news videos.

The formula used to calculate the probability is:

P(X < 25) = P(X ≤ 24)P(X ≤ 24) = P(X < 24.5) (because X is a discrete random variable)

To calculate the probability P(X < 24.5), you will standardize X as shown below:

X ~ N(μ, σ²)X ~ N(np, np(1 - p))X ~ N(50 × 0.52, 50 × 0.52 × 0.48)X ~ N(26, 12.48)z = (X - μ) / σz = (24.5 - 26) / √(12.48)z

= -1.31

Using a standard normal table, we find that P(Z < -1.31) = 0.0951

Therefore, P(X < 24.5) = 0.0951P(X ≤ 24)

= P(X < 24.5) ≈ 0.0951

Therefore, the probability that fewer than half in your sample will watch news videos is 0.0951 or 0.0951. (Round to four decimal places as needed.)

Know more about probability here:

https://brainly.com/question/251701

#SPJ11

If a firm's profit is modeled by the following function: Z = - 3x2 +12x + 25, Then the maximum profit is ________ .

Answers

To find the maximum profit, we can look for the vertex of the parabolic function representing the profit.

The given profit function is:

[tex]Z = -3x^2 + 12x + 25[/tex]

We can see that the coefficient of the [tex]x^2[/tex] term is negative, which means the parabola opens downwards. This indicates that the vertex of the parabola represents the maximum point.

The x-coordinate of the vertex can be found using the formula:

[tex]x = \frac{-b}{2a}[/tex]

In our case, a = -3 and b = 12. Plugging these values into the formula, we get:

[tex]x = \frac{-12}{2 \cdot (-3)}\\\\x = \frac{-12}{-6}\\\\x = 2[/tex]

To find the maximum profit, we substitute the x-coordinate of the vertex into the profit function:

[tex]Z = -3(2)^2 + 12(2) + 25\\\\Z = -12 + 24 + 25\\\\Z = 37[/tex]

Therefore, the maximum profit is 37.

To know more about Coefficient visit-

brainly.com/question/13431100

#SPJ11

(fill in the blank) The feasible solution space for an integer programming model is____ the feasible solution space for a linear programming version of the same model. a. equal to b. smaller than c. larger than

Answers

The feasible solution space for an integer programming model is smaller than that for a linear programming model, as stated in the statement.

The feasible solution space for an integer programming model is smaller than the feasible solution space for a linear programming version of the same model.What is integer programming?Integer programming is a mathematical approach that solves optimization problems that include integer decision variables. It includes optimization methods such as branch and bound, branch and cut, and cutting planes, among others, to obtain the optimal solution. Linear programming is a subset of integer programming.

To know more about this, optimization visit

https://brainly.com/question/28587689

#SPJ11

Show that for Poiseuille flow in a tube of radius R the magnitude of the wall shearing stress, T_r_1, can be obtained from the relationship |(T_r2)_wall| = 4 mu Q/pi R^3 for a Newtonian fluid of viscosity mu. The volume rate of flow is Q. (b) Determine the magnitude of the wall shearing stress for a fluid having a viscosity of 0.004 N middot s/m^2 flowing with an average velocity of 130 mm/s in a 2-mm-diameter tube.

Answers

For Poiseuille flow in a tube of radius R, the magnitude of the wall shearing stress can be obtained using the relationship

|(T_r2)_wall| = 4μQ/πR³

where μ is the viscosity of the fluid and Q is the volume rate of flow.

To determine the magnitude of the wall shearing stress for a fluid with a viscosity of 0.004 N·s/m² flowing at an average velocity of 130 mm/s in a 2-mm-diameter tube, we can substitute the given values into the equation.

In Poiseuille flow, the wall shearing stress can be calculated using the equation |(T_r2)_wall| = 4μQ/πR³. Here, μ represents the viscosity of the fluid and Q is the volume rate of flow.

To determine the magnitude of the wall shearing stress for a fluid with a viscosity of 0.004 N·s/m² flowing at an average velocity of 130 mm/s in a 2-mm-diameter tube, we need to convert the given values to the appropriate units.

First, convert the diameter of the tube to radius by dividing it by 2: R = 2 mm / 2 = 1 mm = 0.001 m.

Next, convert the average velocity to volume rate of flow using the equation Q = A·v, where A is the cross-sectional area of the tube and v is the velocity.

The cross-sectional area of a tube with radius R is A = πR². Substituting the values, we have Q = π(0.001 m)² · 130 mm/s = π(0.001 m)² · 0.13 m/s.

Now, we can substitute the viscosity and volume rate of flow into the equation for wall shearing stress: |(T_r2)_wall| = 4(0.004 N·s/m²) · π(0.001 m)² · 0.13 m/s / π(0.001 m)³ = 4(0.004 N·s/m²) · 0.13 m/s / (0.001 m)³ = 0.052 N/m².

Therefore, the magnitude of the wall shearing stress for a fluid with a viscosity of 0.004 N·s/m² flowing at an average velocity of 130 mm/s in a 2-mm-diameter tube is 0.052 N/m².

To learn more about Poiseuille flow visit:

brainly.com/question/30970200

#SPJ11

36 people were asked to choose from among 6 suggested pathologists to be their personal doctors. Each person could choose only one pathologist. So we have 6 pathologists with codes 1, 2, 3, 4, 5, 6 and based on their answers we have the following results.

Physicians

1

2

3

4

5

6

Observed frequencies

2

8

6

4

10

6

Consider at the level of 5%, if there is a difference between the choice of the pathologist among the people they chose. Apply all the steps of the audit and show your work in detail.

Answers

The expected frequencies is

Physicians | Observed frequencies | Probability | Expected frequencies

1 | 2 | 2/36 | (36) * (2/36)

2 | 8 | 8/36 | (36) * (8/36)

3 | 6 | 6/36 | (36) * (6/36)

4 | 4 | 4/36 | (36) * (4/36)

5 | 10 | 10/36 | (36) * (10/36)

6 | 6 | 6/36 | (36) * (6/36)

To determine if there is a difference in the choice of pathologists among the people surveyed, we can conduct a chi-square goodness-of-fit test. This test compares the observed frequencies of choices with the expected frequencies under the assumption of no difference.

Let's go through the steps of the chi-square test:

Step 1: State the hypotheses

Null hypothesis (H0): There is no difference in the choice of pathologists.

Alternative hypothesis (H1): There is a difference in the choice of pathologists.

Step 2: Set the significance level

In this case, the significance level is given as 5%, which corresponds to α = 0.05.

Step 3: Compute the expected frequencies

To calculate the expected frequencies, we need to assume that there is no difference in the choice of pathologists. We can calculate the expected frequencies using the formula:

Expected frequency = (Total number of observations) * (Probability of each choice)

The total number of observations is the sum of the observed frequencies, which is 36 in this case.

The probabilities of each choice can be calculated by dividing each observed frequency by the total number of observations.

Using this information, we can calculate the expected frequencies:

Physicians | Observed frequencies | Probability | Expected frequencies

1 | 2 | 2/36 | (36) * (2/36)

2 | 8 | 8/36 | (36) * (8/36)

3 | 6 | 6/36 | (36) * (6/36)

4 | 4 | 4/36 | (36) * (4/36)

5 | 10 | 10/36 | (36) * (10/36)

6 | 6 | 6/36 | (36) * (6/36)

Step 4: Compute the chi-square statistic

The chi-square statistic can be calculated using the formula:

χ^2 = ∑[(Observed frequency - Expected frequency)^2 / Expected frequency]

Calculate this for each category and sum up the results.

Step 5: Determine the critical value

With 6 categories and α = 0.05, the degrees of freedom for the chi-square test are (number of categories - 1) = 6 - 1 = 5. Consult a chi-square distribution table or use statistical software to find the critical value for α = 0.05 and 5 degrees of freedom.

Step 6: Make a decision

If the calculated chi-square statistic is greater than the critical value, we reject the null hypothesis and conclude that there is a significant difference in the choice of pathologists. If the calculated chi-square statistic is less than or equal to the critical value, we fail to reject the null hypothesis.

Now, follow these steps to calculate the chi-square statistic and make a decision based on the given information.

Learn more about Probability here

https://brainly.com/question/25839839

#SPJ11

Let X be a continuous random variable with E(X)=i! for i=0,1,2,.... (a) Show that X has an exponential distribution. State its parameter. (a) If X₁, X₂,..., X₁ are independent observations for X

Answers

Hence, X has an exponential distribution with parameter λ = i!. (a) If X₁, X₂,..., X₁ are independent observations for XIf X1, X2,..., Xn are independent and identically distributed random variables, then the sample mean[tex]$$\overline X = \frac{1}{n}\sum_{i=1}^{n} X_i$$[/tex]

also follows the exponential distribution with the same parameter λ.

Given that, X is a continuous random variable with E(X)=i! for i=0,1,2,...

(a) Show that X has an exponential distribution. State its parameter.A random variable X is said to follow the exponential distribution if its probability density function is given by;

[tex]$$ f(x)[/tex] =

[tex]\begin{cases} \lambda e^{-\lambda x} & x\ge0\\ 0 & x < 0 \end{cases}[/tex]

Here, X is a continuous random variable with the expectation value

[tex]$$E(X) = i!$$[/tex]

For i = 0,

E(X) = 0!

= 1

For i = 1,

E(X) = 1!

= 1

For i = 2,

E(X) = 2!

= 2

For i = 3,

E(X) = 3!

= 6

Similarly, for any i, E(X) = i!

Let us find the probability density function of X.

[tex]f(x) = \frac{dF(x)}{dx}[/tex]

Here, F(x) is the cumulative distribution function of X. We have,

[tex]$$F(x) = P(X\le x)$$$$[/tex]

=[tex]\int_{-\infty}^{x} f(t) dt$$$$[/tex]

=[tex]\int_{0}^{x} f(t) dt$$[/tex]

As f(x) = 0 for x<0, the lower limit of the integral can be taken as 0.

[tex]$$F(x) = \int_{0}^{x} f(t) dt$$$$[/tex]

=[tex]\int_{0}^{x} \lambda e^{-\lambda t} dt$$$$[/tex]

=[tex]\left[ -e^{-\lambda t} \right]_{0}^{x}$$$$[/tex]

=[tex]1-e^{-\lambda x}$$[/tex]

Now, let us differentiate F(x) with respect to x.

[tex]$$f(x) = \frac{dF(x)}{dx}$$$$[/tex]

=[tex]\frac{d}{dx}\left(1-e^{-\lambda x}\right)$$$$[/tex]

= [tex]\lambda e^{-\lambda x}$$[/tex]

Comparing this equation with the standard pdf of the exponential distribution, we have;

[tex]$$\lambda=\\[/tex]

[tex]E(X) = i!$$[/tex]

To know more about  random variable visit:

https://brainly.com/question/30789758

#SPJ11

Suppose that A and B are two events such that P(A) + P(B) > 1.
find the smallest and largest possible values for p (A ∪ B).

Answers

The smallest possible value for P(A ∪ B) is P(A) + P(B) - 1, and the largest possible value is 1.

To understand why, let's consider the probability of the union of two events, A and B. The probability of the union is given by P(A ∪ B) = P(A) + P(B) - P(A ∩ B), where P(A ∩ B) represents the probability of both events A and B occurring simultaneously.

Since probabilities are bounded between 0 and 1, the sum of P(A) and P(B) cannot exceed 1. If P(A) + P(B) exceeds 1, it means that the events A and B overlap to some extent, and the probability of their intersection, P(A ∩ B), is non-zero.

Therefore, the smallest possible value for P(A ∪ B) is P(A) + P(B) - 1, which occurs when P(A ∩ B) = 0. In this case, there is no overlap between A and B, and the union is simply the sum of their probabilities.

On the other hand, the largest possible value for P(A ∪ B) is 1, which occurs when the events A and B are mutually exclusive, meaning they have no elements in common.

If P(A) + P(B) > 1, the smallest possible value for P(A ∪ B) is P(A) + P(B) - 1, and the largest possible value is 1.

To know more about events click here:

Other Questions
On January 1, 2017, Assembly System Corporation's Retained Earnings account had a balance of $275,000. During 2017, cash dividends of $50,000 were declared and stock dividends with a market value of $40,000 were declared. Net income for 2017 amounted to $120,000.What is the balance in Retained Earnings appearing on the statement of shareholders' equity on December 31, 2017?Question 5 options:$345,000$305,000$185,000$395,000Question 6 (1 point)The Air Heart Corporation (legal business number of AH73,351,826) has sales revenue of $2.31 million, variable costs of $1.23 million, and fixed costs of $463,000.What amount of sales, in units, are required for the firm to earn an operating income of $459,000? The company sells a single product with a sales price of $1,000.Round to the nearest unit and enter your answer with NO dollar signs, commas, or spaces. For example, if the answer was 150,462.35 you would just enter 150462 in the box provided!Your Answer:Question 7 (1 point)At the beginning of 2021, Mark's Manufacturing had the following estimates for it's three departmentsMixing Grinding Assembly TOTALManufacturing Overhead $800,000 $600,000 $900,000 $2,300,000Direct Labour Cost $400,000 $500,000 $600,000 $1,500,000Direct Labour Hours 20,000 25,000 30,000 75,000Machine Hours 30,000 40,000 8,000 78,000A single plant-wide predetermined manufacturing cost driver rate based on direct labour hours is:Question 7 options:$30.67 per direct labour hour$24.00 per direct labour hour$40.00 per direct labour hour$30.00 per direct labour hour$29.49 per direct labour hourTropicana (legal business name of #BN134,993,314) had 38,000 litres of orange juice concentrate in ending WIP Inventory. Materials are added at the beginning of the process. What are the equivalent units in ending WIP Inventory for conversion costs if the orange juice concentrate is only 29% through the process?Your Answer:Which of the following is not true of the terms debit and credit?Question 9 options:They can be interpreted to mean left and right.They can be used to describe the balance of an account.They can be abbreviated as Dr. and Cr.They can be interpreted to mean increase and decrease.Deferred revenues are classified asQuestion 10 options:revenue on the statement of income.assets on the statement of financial position.expenses on the statement of income.liabilities on the statement of financial position.shareholders' equity on the statement of financial position. The key characteristic that determines when consolidated financial statements should be prepared is: Select one: a. control. b. significant influence. c. the existence of transactions between the entities. d. substance over form. You are considering whether to pursue a higher degree after you finish your college study. The tuition for a two-year master program is 10000, andyourmonthlyincomewillbe 100 higher in the first 10 years after your graduation. Ignoring other gains, will you choose to take part in this program if the interest rate is 6967 A company in a free competition market has marginal costs given by MC (Q) = 50 + 3Q where Q is the quantity. If the price in the market is 200, what will be the contribution margin for optimal adaptation for the company? (Answer with an integer) Question 2 5 pts MACRS is preferred to SLN for income tax purposes because it maximizes. the present worth of taxes. O True O False When a change in accounting policy occurs:a.nothing should be done.b.the new policy should only be adjusted prospectivelyc.the new policy should be adjusted retrospectivelyd.the cumulative effect of the change in policy should be reflected on the income statement as of the beginning of the next year. today, approximately how many undocumented immigrants live in the us? what does this best represent?a. daltons law b. charless law c. ideal gas law d. combined gas law The Consumer Financial Protection Bureau is empowered to sue business owners in court or at its sole discretion subject business owners to an administrative-enforcement hearing, administered by the CFPB. Those in-house decisions can be appealed to the CFPBs director. After the directors decision a business owner may then appeal to the regular courts. Courts are required to defer to the CFPBs factual findings and legal conclusions. In Seila Law v. CFPB the U.S. Supreme Court considered whether the vesting of substantial executive authority in the Consumer Financial Protection Bureau, an independent agency led by a single director, violates the separation of powers. This case was decided in June 2020. Please read about this case (do several web searches). Discuss, using external sources to back up your assertions, whether or not the legislative and executive functions of agencies are contemplated within the constitutional authority granted the executive and legislative branches, and whether, in your informed opinion, the CFPB should be left as is, or disbanded, or restricted in a way that everyone may agree meets constitutional standards. Resource Video: http://thebusinessprofessor.com/authority-for-administrative-agency-functions/ QUESTION 5 A monopoly faces the following demand curve: Q(P) = 20,007-247P Its total cost function is: C(Q)= $2675 +37Q Calculate the profit maximizing quantity. the idea of reciprocal helping applies best to which of the following situations? Manuel thinks that if you want to get positive outcomes in life, all you need to do is work hard. His philosophy supports the ________. a) self-serving bias b) actor-observer bias c) just-world hypothesis we are going to examine how greater demand elasticity affects the Mark-up Index (MI=(P-MC)/MC). You are given two alternative demand functions for ManuProd International: P=250-6.57*Q P=250-1.65*Q Silver was claimed to be the most common color for automobiles and that 24% of all automobiles sold are silver. To test this claim, a random sample of 225 cars were taken and 63 of them are silver. Conduct a two-sided hypothesis test.What are the conditions we need to check for the hypothesis test?A; The population size is larger than 2250.B; The sample size is large enough. np_0=63>10np0=63>10 and n(1-p_0)=162>10n(1p0)=162>10C; The sample is normally distributed.D; The population size is larger 225.E; The sample size is large enough. np_0=54>10np0=54>10 and n(1-p_0)=171>10n(1p0)=171>10F; The cars are randomly and independently sampled. The total annual ordering cost (SD/Q) when ordering EOQ is 5,813dollars. Caring cost per unit per year (H) is 8 dollars. ComputeEOQ. Enter your answer as a whole number with NO decimalpoint. You select a random sample of 10 observations and compute s, theestimate of . Even though there are 10 observations, s is reallybased on only nine independent pieces of information.(Explain.) Suppose market demand is P = 100 QD and market supply is P = 10 + QS. a) Sketch the demand and supply curves.b) Find equilibrium price and quantity in the competitive market.c) Calculate the consumers willingness to pay (WTP), expenditures, and Consumer Surplus.d) Calculate the firms costs, revenues, and Producer Surplus.f) Now suppose the government imposes a consumption tax of $10. What is the impact on equilibrium quantity in the market?g) What is the impact on CS and PS? Discuss. h) What is the deadweight loss (DWL) of the consumption tax? Tony is the general manager of a corrugated cardboard and packaging production plant.He's hired you as an operations consultant to help him put Lean Management into practice at his company.He wants you to address his main worry (eliminate waste). You should begin by identifying the waste sources.In the Operations Management chapter, we explored Seven Waste Ohno; please identify and describe three of them in detail that related to this case Evaluating the Timing of Cash Flows Case The manager of Champion Catering was quite excited when he learned that the cash flows for his business had more than doubled in November. Instead of the normal $5,000 positive cash flow per month, the cash flow for November was $12,4000. To be sure there was not any error, he made up the following summary of cash receipts and disbursements for the month: Collections on catering provided this month $11,500 3,200 Collections on catering provided last month 3,400 Deposits for catering to be provided next month Payments for salaries and catering supplies Payment of building rent 4,500 1,200 He also noted that his new "Pay Ahead-Get a Discount" program had been very successful. He had no uncollected receivables from customers at the end of November and had received prepayment for catering to be provided at several Christmas parties. He remembered that one of his employees was on vacation over Thanksgiving and was not paid for the second half of the month. A total of $3,000 is owed to the employee for work in November. The manager is hopeful that this upturn in cash flows will continue for the next several months so he can purchase his own building. Required: 1. Evaluate the November cash flow for Champion Catering. 2. Assess the likelihood of its being able to sustain the good fortunes of November. Consider a market with the following Inverse Demand and Marginal Cost/Supply Curves:Inverse Demand: P = 40 - 1.5QInverse Supply: P = 4 + 1.5QSuppose that there are 4 firms that control this market and they come together to form a cartel. How much output will each firm produce?