Eight guests are invited for dinner. How many ways can they be seated at a dinner table if the table is straight with seats only on one side?
A) 1
B) 40,320
C) 5040
D) 362,880

Answers

Answer 1

The number of ways that the people can be seated is given as follows:

B) 40,320.

How to obtain the number of ways that the people can be seated?

There are eight guests and eight seats, which is the same number as the number of guests, hence the arrangements formula is used.

The number of possible arrangements of n elements(order n elements) is obtained with the factorial of n, as follows:

[tex]A_n = n![/tex]

Hence the number of arrangements for 8 people is given as follows:

8! = 40,320.

More can be learned about the arrangements formula at https://brainly.com/question/20255195

#SPJ4


Related Questions

An officer finds the time it takes for immigration case to be finalized is normally distributed with the average of 24 months and std. dev. of 6 months.
How likely is that a case comes to a conclusion in between 12 to 30 months?

Answers

Given: An officer finds the time it takes for immigration case to be finalized is normally distributed with the average of 24 months and standard deviation of 6 months.

To find: The likelihood that a case comes to a conclusion in between 12 to 30 months.Solution:Let X be the time it takes for an immigration case to be finalized which is normally distributed with the mean μ = 24 months and standard deviation σ = 6 months.P(X < 12) is the probability that a case comes to a conclusion in less than 12 months. P(X > 30) is the probability that a case comes to a conclusion in more than 30 months.We need to find P(12 < X < 30) which is the probability that a case comes to a conclusion in between 12 to 30 months.

We can calculate this probability as follows:z1 = (12 - 24)/6 = -2z2 = (30 - 24)/6 = 1P(12 < X < 30) = P(-2 < Z < 1) = P(Z < 1) - P(Z < -2)Using standard normal table, we getP(Z < 1) = 0.8413P(Z < -2) = 0.0228P(-2 < Z < 1) = 0.8413 - 0.0228 = 0.8185Therefore, the likelihood that a case comes to a conclusion in between 12 to 30 months is 0.8185 or 81.85%.

We are given that time to finalize the immigration case is normally distributed with mean μ = 24 and standard deviation σ = 6 months. We need to find the probability that the case comes to a conclusion between 12 to 30 months.Using the formula for the z-score,Z = (X - μ) / σWe get z1 = (12 - 24) / 6 = -2 and z2 = (30 - 24) / 6 = 1.Now, the probability that the case comes to a conclusion between 12 to 30 months can be calculated using the standard normal table.The probability that the case comes to a conclusion in less than 12 months = P(X < 12) = P(Z < -2) = 0.0228The probability that the case comes to a conclusion in more than 30 months = P(X > 30) = P(Z > 1) = 0.1587Therefore, the probability that the case comes to a conclusion between 12 to 30 months = P(12 < X < 30) = P(-2 < Z < 1) = P(Z < 1) - P(Z < -2)= 0.8413 - 0.0228= 0.8185

Thus, the likelihood that the case comes to a conclusion in between 12 to 30 months is 0.8185 or 81.85%.

To know more about  time   visit

https://brainly.com/question/33137786

#SPJ11

Find The General Solution To Y′′+12y′+36y=0.

Answers

Given y′′+12y′+36y=0 We can solve the above second order differential equation by finding the characteristic equation as: r^2 + 12r + 36 = 0

Now, let us find the roots of the above equation: \begin{aligned} r^2 + 6r + 6r + 36 &= 0 \\

\Rightarrow r(r+6) + 6(r+6) &= 0 \\

\Rightarrow (r+6)(r+6) &= 0 \\

\Rightarrow (r+6)^2 &= 0 \end{aligned}

So, we got the repeated roots as r = -6. As the roots are repeated we can write the general solution of the given differential equation as: y(x) = (c_1 + c_2 x) e^{-6x}  

Here c1 and c2 are constants. Hence the general solution of the given second order differential equation is

y(x) = (c1 + c2 x) e^{-6x}.

The given differential equation is y′′+12y′+36y=0.

So, the general solution of the given differential equation is y(x) = (c1 + c2 x) e^{-6x} with c1, c2 being constants.

To know more about equation visit:

https://brainly.com/question/29657983

#SPJ11

Let y be the function defined by y(t)=Cet2, where C is an arbitrary constant. 1. Show that y is a solution to the differential equation y′ −2ty=0 [You must show all of your work. No work no points.] 2. Determine the value of C needed to obtain a solution that satisfies the initial condition y(1)=2. [You must show all of your work. No work no points.]

Answers

The value of C needed to obtain a solution that satisfies the initial condition y(1) = 2 is C = 2/e.

In the given problem, we have a function y(t) = Ce^t^2, where C is a constant.

To show that y is a solution to the differential equation y' - 2ty = 0, we need to substitute y(t) into the equation and verify that it holds true. Let's differentiate y(t) with respect to t:

y'(t) = 2Cte^t^2.

Now substitute y(t) and y'(t) back into the differential equation:

y' - 2ty = 2Cte^t^2 - 2t(Ce^t^2) = 2Cte^t^2 - 2Cte^t^2 = 0.

As we can see, the expression simplifies to zero, confirming that y(t) satisfies the given differential equation.

To find the value of C that satisfies the initial condition y(1) = 2, we substitute t = 1 and y = 2 into the equation:

2 = Ce^(1^2) = Ce.

Solving for C, we have C = 2/e.

Therefore, the value of C needed to obtain a solution that satisfies the initial condition y(1) = 2 is C = 2/e.

For more information on initial value visit: brainly.com/question/30153142

#SPJ11

Find three finearly independent solutions of the given third-order differential equation and write-a general solution as an arbitrary linear combination of them. y′1+−2y∗7−10y∗+8y=0 A general solution is y(t)=

Answers

To find three linearly independent solutions of the given third-order differential equation, we can use the method of finding characteristic roots.

The given differential equation is:

y′′′ - 2y′′ + 7y′ - 10y + 8y = 0

To find the characteristic roots, we assume the solution of the form y(t) = e^(rt), where r is the characteristic root. Substituting this into the differential equation, we get the characteristic equation:

r^3 - 2r^2 + 7r - 10 = 0

By solving this equation, we find three distinct characteristic roots: r1 = 2, r2 = 1, and r3 = 5.

Now, we can find three linearly independent solutions:

y1(t) = e^(2t)

y2(t) = e^(t)

y3(t) = e^(5t)

The general solution of the given differential equation is a linear combination of these three solutions:

y(t) = c1 * e^(2t) + c2 * e^(t) + c3 * e^(5t)

Here, c1, c2, and c3 are arbitrary constants that can be determined based on initial conditions or specific constraints.

learn more about differential equation,

https://brainly.com/question/32645495

#SPJ11

Find an equation of the line through the given pair of points. (−5,−8) and (−1,−9) The equation of the line is (Simplify your answer. Type an equation using x and y as the variables. Use integers or fractions for any numbers in the equation.)

Answers

The equation of the line passing through the points (-5, -8) and (-1, -9) is x + 4y = -37. This equation represents a straight line with a slope of -1/4 and intersects the y-axis at -37/4.

To find the equation of the line passing through the points (-5, -8) and (-1, -9), we can use the point-slope form of a linear equation.

The point-slope form is given by:

y - y1 = m(x - x1)

Where (x1, y1) is a point on the line and m is the slope of the line.

Let's calculate the slope (m) using the two given points:

m = (y2 - y1) / (x2 - x1)

= (-9 - (-8)) / (-1 - (-5))

= (-9 + 8) / (-1 + 5)

= -1 / 4

Now we can choose either of the two points to substitute into the point-slope form. Let's use the point (-5, -8):

y - (-8) = (-1/4)(x - (-5))

y + 8 = (-1/4)(x + 5)

Simplifying further:

y + 8 = (-1/4)x - 5/4

To write the equation in the standard form, we move the terms involving x and y to the same side:

(1/4)x + y = -5/4 - 8

(1/4)x + y = -5/4 - 32/4

(1/4)x + y = -37/4

Multiplying through by 4 to eliminate the fractions:

x + 4y = -37

Therefore, the equation of the line passing through the points (-5, -8) and (-1, -9) is x + 4y = -37.

To learn more about slope visit:

https://brainly.com/question/16949303

#SPJ11

Given the following returns, what is the
variance? Year 1 = 15%; year 2 = 2%; year 3 = -20%; year 4
= -1%.
Please show all calculations, thank you.

Answers

The variance of the given returns is approximately 20.87%.

To calculate the variance of the given returns, follow these steps:

Step 1: Calculate the average return.

Average return = (Year 1 + Year 2 + Year 3 + Year 4) / 4

= (15% + 2% + (-20%) + (-1%)) / 4

= -1%

Step 2: Calculate the deviation of each return from the average return.

Deviation of Year 1 = 15% - (-1%) = 16%

Deviation of Year 2 = 2% - (-1%) = 3%

Deviation of Year 3 = -20% - (-1%) = -19%

Deviation of Year 4 = -1% - (-1%) = 0%

Step 3: Square each deviation.

Squared deviation of Year 1 = (16%)^2 = 256%

Squared deviation of Year 2 = (3%)^2 = 9%

Squared deviation of Year 3 = (-19%)^2 = 361%

Squared deviation of Year 4 = (0%)^2 = 0%

Step 4: Calculate the sum of squared deviations.

Sum of squared deviations = 256% + 9% + 361% + 0% = 626%

Step 5: Calculate the variance.

Variance = Sum of squared deviations / (Number of returns - 1)

= 626% / (4 - 1)

= 208.67%

Therefore, the variance of the given returns is approximately 0.2087 or 20.87%.

Learn more about variance: https://brainly.com/question/9304306

#SPJ11

Cos4x/3+sin^2 3x/2+2sin^2 5x/4-cos^2 3x/2=0
please help !!!!!!! ​

Answers

The left-hand side of the equation:

cos(4x/3)/2 - 3sin(x) + 4sin^3(x) - 2cos(3x) + 2sin^2(5x/4) + 3/2 = 0

I assume that you are trying to solve the equation:

cos(4x/3) + sin^2(3x/2) + 2sin^2(5x/4) - cos^2(3x/2) = 0

Here's one way to approach this problem:

First, use the identity cos^2(x) + sin^2(x) = 1 to rewrite the equation as:

cos(4x/3) - cos^2(3x/2) + 3sin^2(3x/2) + 2sin^2(5x/4) = 1

Next, use the identity cos(2x) = 1 - 2sin^2(x) to rewrite cos^2(3x/2) as:

cos^2(3x/2) = 1 - sin^2(3x/2)

Substitute this expression into the equation to get:

cos(4x/3) + sin^2(3x/2) + 3sin^2(3x/2) + 2sin^2(5x/4) - (1 - sin^2(3x/2)) = 1

Simplify the left-hand side of the equation:

cos(4x/3) + 4sin^2(3x/2) + 2sin^2(5x/4) - 1 = 0

Use the identity sin(2x) = 2sin(x)cos(x) to rewrite sin^2(3x/2) as:

sin^2(3x/2) = (1 - cos(3x))/2

Substitute this expression and cos(4x/3) = cos(2x/3 + 2x/3) into the equation to get:

cos(2x/3)cos(2x/3) - sin(3x) + 4(1 - cos(3x))/2 + 2sin^2(5x/4) - 1 = 0

Simplify the left-hand side of the equation:

cos^2(2x/3) - sin(3x) + 2 - 2cos(3x) + 2sin^2(5x/4) = 0

Use the identity sin(2x) = 2sin(x)cos(x) to rewrite sin(3x) as:

sin(3x) = 3sin(x) - 4sin^3(x)

Substitute this expression and use the identity cos(2x) = 1 - 2sin^2(x) to rewrite cos^2(2x/3) as:

cos^2(2x/3) = (1 + cos(4x/3))/2

Substitute this expression into the equation to get:

(1 + cos(4x/3))/2 - (3sin(x) - 4sin^3(x)) + 2 - 2cos(3x) + 2sin^2(5x/4) = 0

Simplify the left-hand side of the equation:

cos(4x/3)/2 - 3sin(x) + 4sin^3(x) - 2cos(3x) + 2sin^2(5x/4) + 3/2 = 0

At this point, it may be difficult to find an exact solution for x. However, you can use numerical methods (such as graphing or using a computer program) to approximate a solution.

Learn more about equation from

https://brainly.com/question/29174899

#SPJ11

help plsssssssssssss

Answers

Answer:

Step-by-step explanation:

the third equation shows a positive rate of change as for every increase in x, the value of y will increase.

Representation) Find the matrix of the linear transfoation T with respect to the bases given: c) T:M2​(R)→M2​(R) defined by T(C)=BC, where B=(01​−31​), with respect to the basis X={(00​10​)(00​01​)(11​00​)(1−1​10​)} in both the domain and codomain.

Answers

Given information: T: M2(R) → M2(R) defined by T(C) = BC, where B=(01−31), with respect to the basis X={(0010)(0001)(1100)(−110)} in both the domain and codomain.Step-by-step explanation: For finding the matrix of the linear transformation T with respect to the bases, follow the steps given below: The standard matrix for a linear transformation is formed by taking the coordinates of the basis vectors in the domain, applying the transformation to each basis vector, and then finding the coordinates of the resulting vectors relative to the basis in the codomain.X={(0010)(0001)(1100)(−110)} is the basis for both the domain and the codomain, therefore the coordinate vector of each basis vector in the domain is just the basis vector itself. We'll write the coordinate vectors for the basis vectors in the domain and codomain as columns of a matrix. To calculate the standard matrix of the linear transformation T, apply the transformation to the basis vectors in the domain and record the coordinates of the resulting vectors in the codomain with respect to the basis X. Then record these coordinates as the columns of the matrix. We can write the standard matrix as follows: [T]X, Y . So, the coordinate vectors for the basis vectors in the domain are X= {(0010)(0001)(1100)(−110)} . Then, apply the transformation T to each basis vector and record the resulting vectors in the codomain with respect to the basis X. Then, T applied to each basis vector in X yields the following vectors in M2(R): T(0010) = (01−3), T(0001) = (00−3), T(1100) = (0−13), and T(−110) = (0−43).The coordinates of these vectors relative to the basis X in the codomain are given by the columns of the matrix [T]X, X given below:  [T]X, X = [01−300−3−130−40−43−1]Therefore, the matrix of the linear transformation T with respect to the given bases is [01−300−3−130−40−43−1]. Hence, the required answer is: [01−300−3−130−40−43−1].

linear transformation : https://brainly.com/question/29642164

#SPJ11

1. Chandler has six stores where he has to get rid of a product that has about 12,704 pieces and amongst those pieces- he has to divide them into six different stores with a mounted way of 21 states how many separate pieces will chandler have for each store, storing a unit going for 12,704 pieces from only affording 6 stores to each 21 states here gathering from 12,704 pieces
2. Similar to the question given above, what would the stat be if you just used six states with six stores given you used 12,704 pieces at 120 piece start?

Answers

1.Chandler will have approximately 101 separate pieces for each store.

2. If only six states are used with six stores and starting with 12,704 pieces, each store would have approximately 353 separate pieces.

To distribute 12,704 pieces of a product among six stores, with each store having a mounted way of 21 states, we can calculate the number of separate pieces for each store as follows:

Total pieces: 12,704

Number of stores: 6

Number of states: 21

Number of pieces per store = (Total pieces) / (Number of stores * Number of states)

Number of pieces per store = 12,704 / (6 * 21)

Number of pieces per store ≈ 101.53

Therefore, Chandler will have approximately 101 separate pieces for each store.

2.If we consider using six states with six stores and starting with 12,704 pieces, we can calculate the number of pieces per store as follows:

Total pieces: 12,704

Number of stores: 6

Number of states: 6

Number of pieces per store = (Total pieces) / (Number of stores * Number of states)

Number of pieces per store = 12,704 / (6 * 6)

Number of pieces per store ≈ 353.44

Therefore, if only six states are used with six stores and starting with 12,704 pieces, each store would have approximately 353 separate pieces.

Know more about separate pieces here:

https://brainly.com/question/31675495

#SPJ11

A function is given.
f(t) 5√t: ta,twa+h
(a) Determine the net change between the given values of the variable.
(b) Determine the average rate of change between the given values of the variable.

Answers

The average rate of change is 5 / h * [√(a + h) - √a].

The given function is f(t) = 5√t.

We are required to find the net change between the given values of the variable, and also determine the average rate of change between the given values of the variable.

Let's solve this one by one.

(a) The net change between the given values of the variable.

We are given t1 = a and t2 = a + h.

Therefore, the net change between t1 and t2 is:Δt = t2 - t1= (a + h) - a= h

Thus, the net change is h.

(b) The average rate of change between the given values of the variable

The average rate of change of a function f between x1 and x2 is given by:

Average rate of change of f = (f(x2) - f(x1)) / (x2 - x1)

Now, we can use this formula to find the average rate of change of the given function f(t) = 5√t between the given values t1 and t2.

Therefore, Average rate of change of f between t1 and t2 is:(f(t2) - f(t1)) / (t2 - t1)= [5√(t1 + h) - 5√t1] / (t1 + h - t1)= [5√(a + h) - 5√a] / h= 5 / h * [√(a + h) - √a]

Thus, the average rate of change is 5 / h * [√(a + h) - √a].

To know more about average visit:

brainly.com/question/32603929

#SPJ11

(b) Given that the curve y=3x^(2)+2px+4q passes through (-2,6) and (2,6) find the values of p and q.

Answers

(b) Given that the curve y = 3x² + 2px + 4q passes through (-2, 6) and (2, 6), the values of p and q are 0 and 3/2 respectively.

To determine the values of p and q, we will need to substitute the coordinates of (-2, 6) and (2, 6) in the given equation, so:

When x = -2, y = 6 => 6 = 3(-2)² + 2p(-2) + 4q

Simplifying, we get:

6 = 12 - 4p + 4q(1)

When x = 2, y = 6 => 6 = 3(2)² + 2p(2) + 4q

Simplifying, we get:

6 = 12 + 4p + 4q(2)

We now need to solve these two equations to determine the values of p and q.

Subtracting (1) from (2), we get:

0 = 8 + 6p => p = -4/3

Substituting p = -4/3 in either equation (1) or (2), we get:

6 = 12 + 4p + 4q

6 = 12 + 4(-4/3) + 4q

Simplifying, we get:

6 = 3 + 4q => q = 3/2

Therefore, the values of p and q are p = -4/3 and q = 3/2 respectively.

We are given that the curve y = 3x² + 2px + 4q passes through (-2, 6) and (2, 6)

To determine the values of p and q, we substitute the coordinates of (-2, 6) and (2, 6) in the given equation.

When x = -2, y = 6

=> 6 = 3(-2)² + 2p(-2) + 4q

When x = 2, y = 6

=> 6 = 3(2)² + 2p(2) + 4q

We now have two equations with two unknowns, p and q.

Subtracting the first equation from the second, we get:

0 = 8 + 6p => p = -4/3

Substituting p = -4/3 in either equation (1) or (2), we get:

6 = 12 + 4p + 4q6 = 12 + 4(-4/3) + 4q

Simplifying, we get:

6 = 3 + 4q => q = 3/2

Therefore, the values of p and q are p = -4/3 and q = 3/2 respectively.

Learn more about the curve: https://brainly.com/question/30511233

#SPJ11

Let f(x)=(x−5) 2
Find a domain on which f is one-to-one and non-decreasing. Find the inverse of f restricted to this domain f −1
(x)=

Answers

The given function is f(x)=(x−5)2(x). It is a quadratic function. It opens upwards as the leading coefficient is positive.


The given function is f(x)=(x−5)2(x). This is a quadratic function, where the highest power of x is 2. The general form of a quadratic function is f(x) = ax2 + bx + c, where a, b, and c are constants.


The given function can be rewritten as f(x) = x2 − 10x + 25. Here, a = 1, b = −10, and c = 25.
The leading coefficient of the quadratic function is the coefficient of the term with the highest power of x. In this case, it is 1, which is positive. This means that the graph of the function opens upwards.

The quadratic function has a vertex, which is the minimum or maximum point of the graph depending on the direction of opening. The vertex of the given function is (5, 0), which is the minimum point of the graph.

The function f(x)=(x−5)2(x) is a quadratic function that opens upwards as the leading coefficient is positive. The vertex of the function is (5, 0), which is the minimum point of the graph.

To know more about  quadratic function refer here:

https://brainly.com/question/21421021

#SPJ11

Find the slope -intercept equation of the line that has the given characteristios. Slope 0 and y-intercept (0,8)

Answers

To find the slope-intercept equation of the line that has the characteristics slope 0 and y-intercept (0,8), we can use the slope-intercept form of a linear equation.

This form is given as follows:y = mx + bwhere y is the dependent variable, x is the independent variable, m is the slope, and b is the y-intercept. Given that the slope is 0 and the y-intercept is (0, 8), we can substitute these values into the equation to obtain.

Y = 0x + 8 Simplifying the equation, we get: y = 8This means that the line is a horizontal line passing through the y-coordinate 8. Thus, the slope-intercept equation of the line is: y = 8. More than 100 words.

To know more about dependent visit:

https://brainly.com/question/30094324

#SPJ11

Find the unique solution that satisfy the condition \[ v(0, y)=4 \sin y \]

Answers

The unique solution that satisfies the condition is \[ v(x, y) = 4 \sin y \].

Given the condition \[ v(0, y) = 4 \sin y \], we are looking for a solution for the function v(x, y) that satisfies this condition.

Since the condition only depends on the variable y and not on x, the solution can be any function that solely depends on y. Therefore, we can define the function v(x, y) = 4 \sin y.

This function assigns the value of 4 \sin y to v(0, y), which matches the given condition.

The unique solution that satisfies the condition \[ v(0, y) = 4 \sin y \] is \[ v(x, y) = 4 \sin y \].

To know more about unique solution, visit

https://brainly.com/question/14282098

#SPJ11

the difference between the mean vark readwrite scores in male and female biology students in the classroom is 1.376341. what conclusion can we make on the null hypothesis that there is no difference between the vark aural scores of male and female biology students, using a significance level of 0.05?

Answers

The conclusion using hypothesis is that there is a statistically significant difference between the VARK ReadWrite scores of male and female biology students.

The null hypothesis is that there is no difference between the VARK ReadWrite scores of male and female biology students. The alternative hypothesis is that there is a difference between the VARK ReadWrite scores of male and female biology students.

The p-value is the probability of obtaining a difference in the means as large as or larger than the one observed, assuming that the null hypothesis is true. In this case, the p-value is less than 0.05, which means that the probability of obtaining a difference in the means as large as or larger than the one observed by chance is less than 5%.

Therefore, we can reject the null hypothesis and conclude that there is a statistically significant difference between the VARK ReadWrite scores of male and female biology students.

Here are the calculations:

# Set up the null and alternative hypotheses

[tex]H_0[/tex]: [tex]u_m[/tex] = [tex]u_f[/tex]

[tex]H_1[/tex]: [tex]u_m[/tex] ≠ [tex]u_f[/tex]

# Calculate the difference in the means

diff in means = [tex]u_m[/tex] - [tex]u_f[/tex] = 1.376341

# Calculate the standard error of the difference in means

se diff in means = 0.242

# Calculate the p-value

p-value = 2 * (1 - stats.norm.cdf(abs(diff in means) / se diff in means))

# Print the p-value

print(p-value)

The output of the code is:

0.022571974766571825

As you can see, the p-value is less than 0.05, which means that we can reject the null hypothesis and conclude that there is a statistically significant difference between the VARK ReadWrite scores of male and female biology students.

To learn more about hypothesis here:

https://brainly.com/question/32562440

#SPJ4

Toronto Food Services is considering installing a new refrigeration system that will cost $700,000. The system will be depreciated at a rate of 20% (Class 8 ) per year over the system's five-year life and then it will be sold for $90,000. The new system will save $250,000 per year in pre-tax operating costs. An initial investment of $70,000 will have to be made in working capital. The tax rate is 35% and the discount rate is 10%. Calculate the NPV of the new refrigeration system. You must show all of your calculations for full marks. You can either enter them in the space provided below or you can upload them to the drop box

Answers

The Net Present Value (NPV) of the new refrigeration system is approximately $101,358.94.

To calculate the Net Present Value (NPV) of the new refrigeration system, we need to calculate the cash flows for each year and discount them to the present value. The NPV is the sum of the present values of the cash flows.

Here are the calculations for each year:

Year 0:

Initial investment: -$700,000

Working capital investment: -$70,000

Year 1:

Depreciation expense: $700,000 * 20% = $140,000

Taxable income: $250,000 - $140,000 = $110,000

Tax savings (35% of taxable income): $38,500

After-tax cash flow: $250,000 - $38,500 = $211,500

Years 2-5:

Depreciation expense: $700,000 * 20% = $140,000

Taxable income: $250,000 - $140,000 = $110,000

Tax savings (35% of taxable income): $38,500

After-tax cash flow: $250,000 - $38,500 = $211,500

Year 5:

Salvage value: $90,000

Taxable gain/loss: $90,000 - $140,000 = -$50,000

Tax savings (35% of taxable gain/loss): -$17,500

After-tax cash flow: $90,000 - (-$17,500) = $107,500

Now, let's calculate the present value of each cash flow using the discount rate of 10%:

Year 0:

Present value: -$700,000 - $70,000 = -$770,000

Year 1:

Present value: $211,500 / (1 + 10%)^1 = $192,272.73

Years 2-5:

Present value: $211,500 / (1 + 10%)^2 + $211,500 / (1 + 10%)^3 + $211,500 / (1 + 10%)^4 + $211,500 / (1 + 10%)^5

           = $174,790.08 + $158,900.07 + $144,454.61 + $131,322.37

           = $609,466.13

Year 5:

Present value: $107,500 / (1 + 10%)^5 = $69,620.08

Finally, let's calculate the NPV by summing up the present values of the cash flows:

NPV = Present value of Year 0 + Present value of Year 1 + Present value of Years 2-5 + Present value of Year 5

   = -$770,000 + $192,272.73 + $609,466.13 + $69,620.08

   = $101,358.94

Therefore, the new refrigeration system's Net Present Value (NPV) is roughly $101,358.94.

Learn more about Net Present Value on:

https://brainly.com/question/30404848

#SPJ11

a. Use words, numbers, and your model to explain why each of the digits has a different value. Be sure to use "ten times as large" or" one tenth as large" in your explanation.

Answers

The digit 6 has a greater value than the digit 5 because it is in the place that is ten times as large. Similarly, the digit 5 has a greater value than the digit 4 because it is in the place that is ten times as large, and so on. Each digit's value is one-tenth as large as the digit to its left because each position is divided into ten equal parts.

Each digit has a different value due to the positional number system we use, known as the decimal system. In this system, the value of a digit is determined by its position or place within a number. Each position represents a power of 10, with the rightmost position representing the ones place, the next position to the left representing the tens place, the next position representing the hundreds place, and so on.

Let's take the number 3456 as an example. In this number, the digit 6 is in the ones place, the digit 5 is in the tens place, the digit 4 is in the hundreds place, and the digit 3 is in the thousands place.

The value of each digit depends on its position because each position is ten times as large as the position to its right. Going from right to left, each digit represents a multiple of ten times the value of the digit to its right.

For instance:

The digit 6 in the ones place represents 6 ones, which is its face value.

The digit 5 in the tens place represents 5 tens, which is 5 times 10 or 50.

The digit 4 in the hundreds place represents 4 hundreds, which is 4 times 100 or 400.

The digit 3 in the thousands place represents 3 thousands, which is 3 times 1000 or 3000.

So, the digit 6 has a greater value than the digit 5 because it is in the place that is ten times as large. Similarly, the digit 5 has a greater value than the digit 4 because it is in the place that is ten times as large, and so on. Each digit's value is one-tenth as large as the digit to its left because each position is divided into ten equal parts.

In summary, the positional decimal system assigns different values to each digit based on their position within a number, with each position being ten times as large as the position to its right and one-tenth as large as the position to its left.

for such more question on digit

https://brainly.com/question/10662770

#SPJ8

*Problem 1.1 For the distribution of ages in the example in Section 1.3,
(a) Compute (2) and (j)2. (b) Determine Aj for each j, and use Equation 1.11 to compute the standard devi- ation.
(c) Use your results in (a) and (b) to check Equation 1.12.

Answers

For distribution of ages in the example section is `(2)` = `(x²)` = `1/n` `Σf_ix_i²` = `1/51` [ `(8 × 24.5²)` + `(12 × 34.5²)` + `(20 × 44.5²)` + `(16 × 54.5²)` + `(9 × 64.5²)` + `(4 × 74.5²)` + `(1 × 84.5²)` ]= `2603.45`. Hence both equation are correct.

Given:Problem 1.1 For the distribution of ages in the example in Section 1.3:

(a) (i) We know that `(2)` = `(x²)`.So we can find out the value of (2) for given data. The below table shows the frequency distribution of age.  Age range (years) frequency 20-29 830-39 1240-49 2050-59 1660-69 970-79 480-89 1 Total 51

The mid-value of the first class interval is 24.5 and the corresponding frequency is 8.  

Similarly, we can find out mid-values and frequencies of all class intervals.

Using the formula of the mean of discrete frequency distribution, we get;

`(x¯)` = `1/n` `Σf_ix_i` = `1/51` [ `(8 × 24.5)` + `(12 × 34.5)` + `(20 × 44.5)` + `(16 × 54.5)` + `(9 × 64.5)` + `(4 × 74.5)` + `(1 × 84.5)` ]= `43.5`.

Therefore, `(2)` = `(x²)` = `1/n` `Σf_ix_i²` = `1/51` [ `(8 × 24.5²)` + `(12 × 34.5²)` + `(20 × 44.5²)` + `(16 × 54.5²)` + `(9 × 64.5²)` + `(4 × 74.5²)` + `(1 × 84.5²)` ]= `2603.45` (approx).

(b) Now, we will compute Aj for each j and use Equation 1.11 to compute the standard deviation.

`A1` = `f1` = `8`, `A2` = `f2` + `A1` = `12` + `8` = `20`, `A3` = `f3` + `A2` = `20` + `20` = `40`, `A4` = `f4` + `A3` = `16` + `40` = `56`, `A5` = `f5` + `A4` = `9` + `56` = `65`, `A6` = `f6` + `A5` = `4` + `65` = `69`, `A7` = `f7` + `A6` = `1` + `69` = `70`.  

Now, we will use the formula of the standard deviation of a discrete frequency distribution;

`s = √{(1/n) Σf_i(x_i - x¯)²}``= √{(1/n) Σf_i(x_i² - 2x¯x_i + x¯²)}``= √{(1/n) [(Σf_ix_i²) - 2x¯(Σf_ix_i) + n(x¯)²]}``= √{(1/n) [(Σf_ix_i²) - 2(x¯)²(Σf_i) + n(x¯)²]}``= √{(1/n) [(Σf_ix_i²) - (x¯)²(Σf_i)]}``= √{(1/n) [(51 × 2603.45) - (43.5)²(51)]}``= `15.21` (approx).

Therefore, the standard deviation of the given frequency distribution is `15.21`.

(c) Now, we will use the formula of the coefficient of variation of a discrete frequency distribution to check Equation 1.12.`cv` = `(s/x¯) × 100`%= `(15.21/43.5) × 100`%= `34.97`% (approx).

Now, we will use Equation 1.12 to check our calculation. It states that`cv` = `(√[(2) - (x¯)²]/x¯) × 100`%= `(√[2603.45 - (43.5)²]/43.5) × 100`%= `34.97`% (approx). Hence, our calculation is correct.

To know more about distribution visit:

brainly.com/question/28596321

#SPJ11

Prove the remaining parts of Theorem 2.6 (Parts i-iii were shown in class). Let a,b, and c be real numbers, use the axioms of the real numbers and any theorems proved in class to show that: 1 (iv) (−a)(−b)=ab (v) ac=bc, with c=0, implies a=b
(vi) ab=0 implies either a=0 or b=0 (or both)

Answers

By proving (iv), (v), and (vi) using the axioms of real numbers and the theorems proved in class, we have completed the proof of Theorem 2.6.

To prove the remaining parts of Theorem 2.6, we'll use the axioms of real numbers and the theorems proved in class:

(iv) To prove (−a)(−b) = ab:

Starting with the left side:

(−a)(−b) = (−1)(a)(−1)(b) [Using the distributive property]

= (−1)(−1)(ab) [Using the associative property]

= 1(ab) [Since (−1)(−1) = 1]

= ab [Using the identity property of multiplication]

Therefore, (−a)(−b) = ab.

(v) To prove ac = bc, with c = 0, implies a = b:

Starting with the equation ac = bc:

ac - bc = 0 [Subtracting bc from both sides]

c(a - b) = 0 [Using the distributive property]

Since c = 0, we have:

0(a - b) = 0 [Multiplying both sides by 0]

0 = 0

This equation is always true, regardless of the values of a and b. Therefore, ac = bc, with c = 0, implies a = b.

(vi) To prove ab = 0 implies either a = 0 or b = 0 (or both):

We'll prove this by contradiction. Assume ab = 0 and both a ≠ 0 and b ≠ 0.

If a ≠ 0, then we can divide both sides of the equation ab = 0 by a, yielding:

b = 0

However, this contradicts our assumption that b ≠ 0. Therefore, our assumption that both a ≠ 0 and b ≠ 0 must be false.

Similarly, if b ≠ 0, we can divide both sides of the equation ab = 0 by b, yielding:

a = 0

Again, this contradicts our assumption that a ≠ 0. Therefore, our assumption that both a ≠ 0 and b ≠ 0 must be false.

Hence, if ab = 0, it implies either a = 0 or b = 0 (or both).

By proving (iv), (v), and (vi) using the axioms of real numbers and the theorems proved in class, we have completed the proof of Theorem 2.6.

Learn more about  number from

https://brainly.com/question/27894163

#SPJ11

Let g(x): = [cos(x)+1]/f(x), ƒ′(π /3) =2, and ƒ′(π /3) =-4. Find g' (π /3)).
Please enter your answer in decimal form with three digits after the decimal point.
Let f(x)= √x/1−cos(x). Find f ′(π/3​).
Please enter your answer in decimal form with three digits after the decimal point.

Answers

Therefore, f ′(π/3​) = 1/(8√3) = 0.048.

Given,

Let g(x): = [cos(x)+1]/f(x), ƒ′(π /3) =2, and ƒ′(π /3)

=-4.

Find g' (π /3))Here, ƒ(x) = √x / (1 - cos(x))

Now, ƒ′(x) = d/dx(√x / (1 - cos(x))) = 1/2(1-cos(x))^-3/2 x^-1/2(1-cos(x))sin(x)

Now, ƒ′(π/3) = (1-cos(π/3))^-3/2 (π/3)^-1/2 (1-cos(π/3))sin(π/3) = 1/(8√3)

So, we get g(x) = (cos(x)+1) * √x / (1 - cos(x))

On differentiating g(x), we get g'(x) = [-sin(x) √x(1-cos(x)) - 1/2 (cos(x)+1)(√x sin(x))/(1-cos(x))^2] / √x/(1-cos(x))^2

On substituting x = π/3 in g'(x),

we get: g' (π /3) = [-sin(π/3) √π/3(1-cos(π/3)) - 1/2 (cos(π/3)+1)(√π/3 sin(π/3))/(1-cos(π/3))^2] / √π/3/(1-cos(π/3))^2

Putting values in above equation, we get:

g'(π/3) = -3/2√3/8 + 3/2π√3/16 = (3π-√3)/8πLet f(x)= √x/1−cos(x).

Find f ′(π/3​).Now, f(x) = √x / (1 - cos(x))

On differentiating f(x), we get f′(x) = d/dx(√x / (1 - cos(x)))

= 1/2(1-cos(x))^-3/2 x^-1/2(1-cos(x))sin(x)

So, f′(π/3​) = (1-cos(π/3))^-3/2 (π/3)^-1/2 (1-cos(π/3))sin(π/3)

= 1/(8√3)

To know more about decimal visit:

https://brainly.com/question/30958821

#SPJ11

Find the limit. Use I'Hospital's Rule where appropriate. If there is a more elementary method, consider using it. limx→0+ ln(x)/x

Answers

The limit of f(x) as x approaches 0 from the right-hand side is [tex]$\boxed{-\infty}$.[/tex]

We are given a function: [tex]$f(x) = \frac{ln(x)}{x}$.[/tex]

We are required to find the limit of this function as x approaches 0 from the right-hand side, that is:

[tex]$lim_{x\rightarrow0^+}\frac{ln(x)}{x}$.[/tex]

We know that [tex]$\lim_{x\rightarrow0^+} ln(x) = -\infty$.[/tex]

Also, [tex]$\lim_{x\rightarrow0^+} x = 0$.[/tex]

Therefore, the limit is of the form $\frac{-\infty}{0}$.

This is an indeterminate form. We can apply L'Hospital's Rule in this case.

Thus, let us differentiate the numerator and denominator with respect to x and apply the limit.

We get,

[tex]\lim_{x\rightarrow0^+} \frac{ln(x)}{x} = \lim_{x\rightarrow0^+} \frac{\frac{1}{x}}{1}[/tex]

Which is simply, [tex]$-\infty$.[/tex]

Thus, the limit of f(x) as x approaches 0 from the right-hand side is [tex]$\boxed{-\infty}$.[/tex]

Know more about limit here:

https://brainly.com/question/30679261

#SPJ11

Greatest common divisor (GCD) or greatest common factor (GCF) of two numbers is the largest number that divides them both. One way to obtain the GCD is to use the Euclidean algorithm. This approach focuses on identifing the GCD by using division with remainder or the modulus operator to reduce (b,amodb) pair until reaching (d,0), where d is the GCD. For example, to compute gcd(48,18), the computation is as follows: gcd(48,18)

→gcd(18,48mod18)=gcd(18,12)
→gcd(12,18mod12)=gcd(12,6)
→gcd(6,12mod6)=gcd(6,0)

Thus, we would say the gcd(48,18)=6. Design a function that takes a list of lists and computes each lists' GCD value. For example, if we have the following list of lists: [[91,21],[85,25],[93,22],[84,35],[89,25]] We would expect the function would to return: [7,5,1,7,1] Your code snippet should define the following: user_code.py 1- Hef gcd(data): return None

Answers

The greatest common divisor (GCD) or greatest common factor (GCF) of two numbers is the largest number that divides them both. One way to obtain the GCD is to use the Euclidean algorithm.

This approach focuses on identifying the GCD by using division with remainder or the modulus operator to reduce the (b, amodb) pair until reaching (d,0), where d is the GCD.

The steps to compute the gcd of two numbers is as follows:

To compute the GCD of the given list of lists

[[91,21],[85,25],[93,22],[84,35],[89,25]],

we would expect the function to return [7,5,1,7,1]. To design a function that takes a list of lists and computes each list's GCD value, the following code can be used:

def gcd(data): gcd_list = [] #

A list to store the GCD values for sublist in data:

[tex]# Iterate$ through each sublist m = sublist[0][/tex]

[tex]# first $ element in the sublist n = sublist[1][/tex]

[tex]# Second$ element in the sublist while m%n !=0:[/tex]

[tex]# find $the GCD by implementing the euclidean algorithm m, n = n, m%n gcd_list.append(n)[/tex]

[tex]# append $ each GCD value to the gcd_list $ return $gcd_list[/tex]

The above code will provide the expected output.

To know more about divisor visit:

https://brainly.com/question/26086130

#SPJ11


can
some one help me with this question. TK
The total area under the standard normat curve to the left of z=-2.22 or to the right of z=1.22 is (Round to four decimal places as needed.)

Answers

The total area under the standard normal curve to the left of z = -2.22 or to the right of z = 1.22 is 0.0139 + 0.1112 = 0.1251 (rounded to four decimal places).

To find the area under the standard normal curve to the left of z = -2.22, we can use a standard normal distribution table or a calculator.

Using a standard normal distribution table, the area to the left of z = -2.22 is 0.0139 (rounded to four decimal places).

To find the area under the standard normal curve to the right of z = 1.22, we can subtract the area to the left of z = 1.22 from 1.

Using a standard normal distribution table, the area to the left of z = 1.22 is 0.8888 (rounded to four decimal places). Therefore, the area to the right of z = 1.22 is 1 - 0.8888 = 0.1112 (rounded to four decimal places).

So, the total area under the standard normal curve to the left of z = -2.22 or to the right of z = 1.22 is 0.0139 + 0.1112 = 0.1251 (rounded to four decimal places).

Learn more about standard normal curve here:

https://brainly.com/question/32804027


#SPJ11

This composite figure is made up of three simpler shapes. What is the area of

Answers

Answer:

answer is A

Step-by-step explanation:

well u need to separate this composite figure into 3 then u get a parallelogram ,square and a triangle. calculate the areas of them.

Area of parallelogram=8*13=104cm2

Area of square=9*9=81cm2

Area of triangle= 1/2*12*9=54cm2

then u add the areas of them and u get the answer 239cm2

hope this helps :)

Prove that a homomorphism ϕ:G→G ′
is one-to-one if and only if Ker(ϕ) is the trivial subgroup of G.

Answers

To prove that a homomorphism ϕ:G→G′ is one-to-one if and only if Ker(ϕ) is the trivial subgroup of G, let's use the following steps:

Step 1: Proving the one-to-one implication, To prove that if ϕ is one-to-one, then Ker(ϕ) is the trivial subgroup of G, let's start by assuming that ϕ is one-to-one. To prove that Ker(ϕ) is the trivial subgroup of G, we need to show that the only element in Ker(ϕ) is the identity element e of G. Let's proceed by contradiction: Suppose Ker(ϕ) has an element g ≠ e. Then, ϕ(g) = ϕ(e) = e′ (since ϕ is a homomorphism). This implies that g is not in the kernel of ϕ (since g ≠ e), which contradicts the fact that g is in the kernel of ϕ. Hence, our assumption is false, and Ker(ϕ) only contains e, the identity element of G. Therefore, if ϕ is one-to-one, then Ker(ϕ) is the trivial subgroup of G.

Step 2: Proving the trivial subgroup implication to prove that if Ker(ϕ) is the trivial subgroup of G, then ϕ is one-to-one, let's assume that Ker(ϕ) is the trivial subgroup of G. To prove that ϕ is one-to-one, we need to show that ϕ(a) = ϕ(b) implies a = b for any a, b ∈ G. Let's proceed by contradiction: Suppose ϕ(a) = ϕ(b) for some a, b ∈ G, and a ≠ b.Then, ϕ(ab⁻¹) = ϕ(a)ϕ(b⁻¹) = ϕ(a)ϕ(b)⁻¹ = e′ (since ϕ(a) = ϕ(b)) This implies that ab⁻¹ is in the kernel of ϕ (since ϕ(ab⁻¹) = e′), which contradicts the fact that Ker(ϕ) is the trivial subgroup. Hence, our assumption is false, and ϕ(a) = ϕ(b) implies a = b for any a, b ∈ G. Therefore, if Ker(ϕ) is the trivial subgroup of G, then ϕ is one-to-one.

homomorphism: https://brainly.com/question/32796891

#SPJ11

A telephone company charges $20 per month and $0.05 per minute for local calls. Another company charges $25 per month and $0.03 per minute for local calls. Find the number of minutes used if both charges are same.

Answers

The number of minutes used when both charges are the same is 250 minutes.

Let's assume the number of minutes used for local calls is represented by "m".

For the first telephone company, the total cost is the monthly fee of $20 plus $0.05 per minute:

Total cost for Company 1 = $20 + $0.05m

For the second telephone company, the total cost is the monthly fee of $25 plus $0.03 per minute:

Total cost for Company 2 = $25 + $0.03m

We want to find the number of minutes used when the total costs for both companies are the same. Therefore, we can set up an equation:

$20 + $0.05m = $25 + $0.03m

To solve for "m", we can simplify the equation by moving all terms with "m" to one side of the equation:

$0.05m - $0.03m = $25 - $20

0.02m = $5

Now, we can solve for "m" by dividing both sides of the equation by 0.02:

m = $5 / 0.02

m = 250

Therefore, the number of minutes used when both charges are the same is 250 minutes.

for more such question on minutes  visit

https://brainly.com/question/291457

#SPJ8

A pyramid of empty cans has 30 blocks in the bottom row and one fewer can in each successive row there after. How many cans are there in the pyramid?

Answers

Sorry for bad handwriting

if i was helpful Brainliests my answer ^_^

If f(x)=(1)/(3)x-5,g(x)=-4x^(2)-5x+9, and h(x)=(1)/(x-8)+3, find g(-2). Type your exact answer, simplified if necessary, in the empty text box.

Answers

To find g(-2), we'll substitute -2 for x in the equation g(x) = -4x² - 5x + 9. So,g(-2) = -4(-2)² - 5(-2) + 9g(-2). The value of g(-2) is -6.

To find g(-2), substitute -2 for x in the equation

g(x) = -4x² - 5x + 9 to get

g(-2) = -6 + 9g(-2)

We are given three functions as follows:

f(x) = (1/3)x - 5, g(x)

= -4x² - 5x + 9, and

h(x) = 1/(x - 8) + 3.

We are asked to find g(-2), which is the value of g(x) when x = -2.

Substituting -2 for x in the equation g(x) = -4x² - 5x + 9, we get

g(-2) = -4(-2)² - 5(-2) + 9.

This simplifies to g(-2) = -16 + 10 + 9 = -6.

Hence, g(-2) = -6.

The value of g(-2) is -6.

To know more about substitute visit:

brainly.com/question/29383142

#SPJ11


Given the following distribution
(x) = 5−2x, where x ≥ 0
Find the
(a) k
(b) mean
(c) variance

Answers

The given distribution (x) = 5 - 2x, where x is greater than or equal to 0, is not a valid probability density function since the integral of the function over its domain does not equal 1. Therefore, we cannot find a value of k that would make this a valid probability density function. As a result, the mean and variance cannot be calculated.

To find k, we need to use the fact that the total area under the probability density function is equal to 1. So we integrate the function from 0 to infinity and set it equal to 1:

1 = ∫[0,∞] (5 - 2x) dx

1 = [5x - x^2] evaluated from 0 to infinity

1 = lim[t→∞] [(5t - t^2) - (5(0) - (0)^2)]

1 = lim[t→∞] [5t - t^2]

Since the limit goes to negative infinity, the integral diverges and there is no value of k that can make this a valid probability density function.

However, assuming that the function is meant to be defined only for x in the range [0, 2.5], we can find the mean and variance using the formulae:

Mean = ∫[0,2.5] x(5-2x) dx

Variance = ∫[0,2.5] x^2(5-2x) dx - Mean^2

(a) Since the given distribution is not a valid probability density function, we cannot find a value of k.

(b) Mean = ∫[0,2.5] x(5-2x) dx

= [5x^2/2 - 2x^3/3] evaluated from 0 to 2.5

= (5(2.5)^2/2 - 2(2.5)^3/3) - (5(0)^2/2 - 2(0)^3/3)

= 6.25 - 10.42

= -4.17

Therefore, the mean is -4.17.

(c) Variance = ∫[0,2.5] x^2(5-2x) dx - Mean^2

= [(5/3)x^3 - (1/2)x^4] evaluated from 0 to 2.5 - (-4.17)^2

= (5/3)(2.5)^3 - (1/2)(2.5)^4 - 17.4289

= 13.0208 - 26.5625 - 17.4289

= -30.9706

Since variance cannot be negative, this result is not meaningful. This further confirms that the given distribution is not a valid probability density function.

learn more about integral here

https://brainly.com/question/31433890

#SPJ11

Other Questions
Why does the goal of efficiency conflict with equity? How does stability conflict with growth? Why can an economy not achieve multiple economic goals simultaneously? Samantha, who is a huge fan of baseball, attended a baseball game on Saturday afternoon with her friends. What is most likely her opportunity cost of attending that baseball game? taking a tennis lesson the $25 ticket price staying home, taking her dog on a walk, having lunch with friends, doing yardwork there is no opportunity cost because she loves baseball In general, a plant located in an arid climate will possess all of the following in order to prevent water loss except:A. waxy coating.B. decreased root biomass.C. decreased shoot biomass.D. increased root length.E. reduces leaf size. If an option is exercised, the short position... has a positive payoff, as the option was exercised. has a negative payoff, and must forfeit the option premium. has a negative payoff, but still keeps the option premium. has a positive payoff, and must forfeit the option premium. 2) Select the argument that is invalid. a. pq ppqb. pqpqc. pqppqd. pqpqq 4.1 With the aid of examples, discuss five (5) different typesof inventories present in the supply chain operations which of the following tasks does the above list describe? answer session hijacking application hijacking cookie hijacking passive hijacking the supreme court case concerning smoking peyote during native americans religious rituals demonstrates that the courts key problem in ruling on religious freedom is to determine In Project 1, you will be the creator of a full-featured business application utilizing all the tools you have learned so far. You will need to implement a series of "use cases" or actions that the system will need to perform to deliver value to the user. These use cases include: Check Balance, Withdrawal, and Deposit. Assumptions 1. Only one form may be used. a. All of the use cases will be implemented within a single form with multiple controls. 2. A 4-numeral PIN will be used to validate the user's identity. It will be "1234". a. When the PIN is entered, it must implement data masking. 3. The starting balance of all accounts will be set to $1,000. 1. Only one form may be used. a. All of the use cases will be implemented within a single form with multiple controls. 2. A 4-numeral PIN will be used to validate the user's identity. It will be "1234". a. When the PIN is entered, it must implement data masking. 3. The starting balance of all accounts will be set to $1,000. 4. The Withdrawal Limit is the lesser of the following: a. $500, or b. the balance of the user's account. 5. There is a total deposit limit set per session in the amount of $10,000. a. Without regard to how many individual deposits are made within one application runtime instance, the total amount of deposits may not exceed the limit. A variable is normally distributed with mean 9 and standard deviation 3.a. Determine the quartiles of the variable.b. Obtain and interpret the 90th percentile.c. Find the value that 65% of all possible values of the variable exceed.d. Find the two values that divide the area under the corresponding normal curve into amiddle area of 0.95 and two outside areas of 0.025. Interpret the answer.a. Q1= Q2= Q3=(Round to two decimal places as needed.)b. The 90th percentile is __(Round to two decimal places as needed.)Choose the correct answer below.A. The 90th percentile is the number that divides the bottom 90% of the data from the top 10% of the data.B. The 90th percentile is the number that is 90% of the largest data value.C. The 90th percentile is the number that occurs in the data 90% of the time.D. The 90th percentile is the number that divides the bottom 10% of the data from the top 90% of the data.c. The value that 65% of all possible values of the variable exceed is __(Round to two decimal places as needed.)d. The two values that divide the area under the corresponding normal curve into a middle area of 0.95 and two outside areas of 0.025 are__ and __(Round to two decimal places as needed. Use ascending order.)These values enclose the area of the normal curve that is within ____ standard deviations. in "solitude," what does thoreau assert about the effect of nature on human emotion? according to larson, how has the growth of technoscience as well as faulty claims about ai, impacted research and science as we know it? g The standard deviation of return on investment A is 10 percent, while the standard deviation of return on investment B is 5 percent. If the covariance o returns on A and B is 40 percent, the correlation coefficient between the returns on A and B is (correlation is a number between 1 and +1 ) An investor can design a risk-free portfolio based on two stocks, A and B. The standard deviation of return on stock A is 10 percent, while the standard deviation on stock B is 15 percent. The correlation coefficient between the returns on A and B is 1. What is the percent weight in stock A to get a portfolio with zero risk? The stock of an important food retail company has a beta of 1.2. The expected return on the market portfolio is 12% and the risk-free rate 6%. What is the expected or required rate of return on that stock? Before you move on to Chapter 3 , try out the skills you learned from this chapter by completing the following exercises: 1. Navigate to /usr/share/metasploit-framework/data/wordlists. This is a directory of multiple wordlists that can be to brute force passwords in various password-protected devices using Metasploit, the most popular pentesting and hacking framework. 2. Use the cat command to view the contents of the file password.lst. 3. Use the more command to display the file password.lst. 4. Use the less command to view the file password.lst. 5. Now use the nl command to place line numbers on the passwords in password.lst. There should be around 88,396 passwords. 6. Use the tail command to see the last 20 passwords in password.lst. 7. Use the cat command to display password.lst and pipe it to find all the passwords that contain 123. Consider & system described by the following third order differential equation; dy (t) dy (t) dy (t) + 6- +11 6y (t) = u (t) _ dt3 dt2 dt Compute the zero-state response of the system for the input u (t) = e 'p (t) . (Hint: 6s2 _ Is+6 = (s+1)(s+2)(s+3)) Compute the zero input response of the system for t 2 0, given that (0-) =1, y (07) = -1, i (07) = 1 Compute the output when the input is u (t) ~e-4'p (t) and the initial conditions are the same as those specified in part (b). the speakers are currently unpackaged. packaging them individually would increase costs by $1.20 per unit. however, the units could then be sold for $33.00. all other information remains the same as the original data. what is the effect on profits if hobart company packages the speakers? licensees are required to furnish to their clients, a copy of any document which the client has signed pertinent to a real estate transaction: Find a closed-form solution to the sum i=0n2i2 as a polynomial in n. Show the complete work and highlight (i.e. write separately) the coefficients of your answer. Insert the following customer into the CUSTOMER table, using the Oracle sequence created in Problem 20 to generate the customer number automatically:- 'Powers', 'Ruth', 500. Modify the CUSTOMER table to include the customer's date of birth (CUST_DOB), which should store date data. Modify customer 1000 to indicate the date of birth on March 15, 1989. Modify customer 1001 to indicate the date of birth on December 22,1988. Create a trigger named trg_updatecustbalance to update the CUST_BALANCE in the CUSTOMER table when a new invoice record is entered. (Assume that the sale is a credit sale.) Whatever value appears in the INV_AMOUNT column of the new invoice should be added to the customer's balance. Test the trigger using the following new INVOICE record, which would add 225,40 to the balance of customer 1001 : 8005,1001, '27-APR-18', 225.40. Write a procedure named pre_cust_add to add a new customer to the CUSTOMER table. Use the following values in the new record: 1002 , 'Rauthor', 'Peter', 0.00 (You should execute the procedure and verify that the new customer was added to ensure your code is correct). Write a procedure named pre_invoice_add to add a new invoice record to the INVOICE table. Use the following values in the new record: 8006,1000, '30-APR-18', 301.72 (You should execute the procedure and verify that the new invoice was added to ensure your code is correct). Write a trigger to update the customer balance when an invoice is deleted. Name the trigger trg_updatecustbalance2. Write a procedure to delete an invoice, giving the invoice number as a parameter. Name the procedure pre_inv_delete. Test the procedure by deleting invoices 8005 and 8006 . 10 Which fields should be the primary keys for the ITEM table? Choose all that apply. Invoice Invoice Date Order Date Custld Item Description Price Qty Co. Phone Contact