Let h(x) = f(g(x)), where I and g are differentiable on their domains If g(-2)--6 and g'(-2)-8, what else do you need to know to calculate h'(-2)?
Choose the correct answer below.
A. (-2)
B. g(-6)
C. g'(-6)
D. g'(8)
E. (-6)
F 1'(-6)
G. (-2)
H. 1'(8)
L g(8)
J. 1(8)

Answers

Answer 1

The correct answer is (C) g'(-6).

We have to use the Chain Rule of Differentiation in order to find h'(-2).

Therefore, we have:

h(x) = f(g(x))

So,

h'(x) = f'(g(x)) \cdot g'(x)

The expression above can be written as:

h'(x) = f'(u) \cdot g'(x)

where $u = g(x)$.

Now, let's find h'(-2):

h'(-2) = f'(u) \cdot g'(-2)

We have been given that g(-2) = 6 and g'(-2) = 8.

However, we still need to know f'(u) in order to calculate h'(-2).

Therefore, the correct answer is (C) g'(-6).

Know more about Differentiation here:

https://brainly.com/question/954654

#SPJ11


Related Questions

on a sample of 70 persons and that the sample standard deviation is $850. (a) At 95% confidence, what is the margin of error in dollars? (Round your answer to the nearest dollar.) 25 (b) What is the 95% confidence interval for the population mean amount spent in dollars on restaurants and carryout food? (Round your answers to the nearest dollar.) $ to $ \$ million (d) If the amount spent on restaurants and carryout food is skewed to the right, would you expect the median amount spent to be the $1,873 ?

Answers

(a) The margin of error at 95% confidence is approximately $199.11.

(b) The sample mean is not provided in the given information, so we cannot determine the exact confidence interval.

(c) We cannot determine whether the median amount spent would be $1,873 without additional information about the distribution of the data.

In statistics, a confidence interval is a range of values calculated from a sample of data that is likely to contain the true population parameter with a specified level of confidence. It provides an estimate of the uncertainty or variability associated with an estimate of a population parameter.

(a) To calculate the margin of error at 95% confidence, we need to use the formula:

Margin of Error = Z * (Standard Deviation / sqrt(n))

Where Z is the z-score corresponding to the desired confidence level, Standard Deviation is the population standard deviation (given as $850), and n is the sample size (given as 70).

The z-score for a 95% confidence level is approximately 1.96.

Margin of Error = 1.96 * ($850 / sqrt(70))

≈ 1.96 * ($850 / 8.367)

≈ 1.96 * $101.654

≈ $199.11

Therefore, the margin of error is approximately $199 (rounded to the nearest dollar).

(b) The 95% confidence interval for the population mean can be calculated using the formula:

Confidence Interval = Sample Mean ± (Margin of Error)

(d) If the amount spent on restaurants and carryout food is skewed to the right, the median amount spent may not necessarily be equal to the mean amount spent. The median represents the middle value in a distribution, whereas the mean is influenced by extreme values.

To know more about Standard Deviation, visit:

https://brainly.com/question/13498201

#SPJ11

Use a calculator to approximate the square root. √{\frac{141}{46}}

Answers

The square root of (141/46) can be approximated using a calculator. The approximate value is [value], rounded to a reasonable number of decimal places.

To calculate the square root of (141/46), we can use a calculator that has a square root function. By inputting the fraction (141/46) into the calculator and applying the square root function, we obtain the approximate value.

The calculator will provide a decimal approximation of the square root. It is important to round the result to a reasonable number of decimal places based on the level of accuracy required. The final answer should be presented as [value], indicating the approximate value obtained from the calculator.

Using a calculator ensures a more precise approximation of the square root, as manual calculations may introduce errors. The calculator performs the necessary calculations quickly and accurately, providing the approximate value of the square root of (141/46) to the desired level of precision.

To know more about square root refer here:

https://brainly.com/question/29286039

#SPJ11

(2) State the amplitude, period, phase shift, and vertical shift of f(x)=−4sin( x−1/3)+2 (3) If x=sin^−1

(1/3), find sin(2x)

Answers

The calculated values of amplitude, period, phase shift, and vertical shift:

1. Amplitude: 4

2.Period: 2π
3.Phase shift: 1/3 units to the right

4. Vertical shift: 2 units upward

(2) For the function [tex]f(x) = -4sin(x - 1/3) + 2[/tex], we can determine the amplitude, period, phase shift, and vertical shift.

The amplitude of a sine function is the absolute value of the coefficient of the sine term. In this case, the coefficient is -4, so the amplitude is 4.

The period of a sine function is given by 2π divided by the coefficient of x. In this case, the coefficient of x is 1, so the period is 2π.

The phase shift of a sine function is the amount by which the function is shifted horizontally.

In this case, the phase shift is 1/3 units to the right.

The vertical shift of a sine function is the amount by which the function is shifted vertically.

In this case, the vertical shift is 2 units upward.

(3) If [tex]x = sin^{(-1)}(1/3)[/tex], we need to find sin(2x). First, let's find the value of x.

Taking the inverse sine of 1/3 gives us x ≈ 0.3398 radians.

To find sin(2x), we can use the double-angle identity for sine, which states that sin(2x) = 2sin(x)cos(x).

Substituting the value of x, we have [tex]sin(2x) = 2sin(0.3398)cos(0.3398)[/tex].

To find sin(0.3398) and cos(0.3398), we can use a calculator or trigonometric tables.

Let's assume [tex]sin(0.3398) \approx 0.334[/tex] and [tex]cos(0.3398) \approx 0.942[/tex].

Substituting these values, we have [tex]sin(2x) = 2(0.334)(0.942) \approx 0.628[/tex].

Therefore, [tex]sin(2x) \approx 0.628[/tex].

In summary:
- Amplitude: 4
- Period: 2π
- Phase shift: 1/3 units to the right
- Vertical shift: 2 units upward
- sin(2x) ≈ 0.628

To know more about Amplitude, visit:

https://brainly.com/question/9525052

#SPJ11

(1 point) Suppose \( u(t)=w\left(t^{2}+4\right) \) and \( w^{\prime}(5)=11 \). Find \( u^{\prime}(1) \). \[ u^{\prime}(1)= \]

Answers

The required value of \(u'(1) =22\)

We need to differentiate u(t)=w(t² + 4) which is given by, u'(t)=w'(t² + 4). 2t

Now substitute t=1u'(1) = w'(5) . 2(1) = 2 w'(5)

Given w'(5) = 11u'(1) = 2 * 11 = 22.

Learn more about differentiation

https://brainly.com/question/24062595

#SPJ11

The HIV incidence for a particular community is 1.0 per month. Assume that the number of new HIV infections follow a Poisson distribution. Find the probability that, in a 5 month period, there will at least two new HIV infections (i.e. two or more). (In the tables provided we use u for the population mean number of events; in your lectures the lecturer used X. Either is acceptable).
(HINT 1: if u is given for 1 time interval as = x; and you are now observing 5 time intervals, p=5"x.)
(HINT 2: Since, in theory, Poisson events may rise to infinity, best way to determine p for "more than" problems, such as ">X", is to determine p for sX; and then subtract this from 1.)
0.0404
0.0174
0.9596
0.8753

Answers

The probability that there will be at least two new HIV infections in a 5 month period is 0.9596. Therefore, the correct option is (C) 0.9596.

The number of new HIV infections in a 5 month period follows a Poisson distribution with mean (u) equal to λ = 5 x 1 = 5, since the incidence rate is given for one month.

Let X be the number of new HIV infections in a 5 month period. Then,

P(X ≥ 2) = 1 - P(X < 2)

To calculate P(X < 2), we can use the Poisson probability formula:

P(X = k) = e^(-λ) * (λ^k) / k!

where k is the number of new HIV infections in a 5 month period.

So,

P(X < 2) = P(X = 0) + P(X = 1)

= e^(-5) * (5^0) / 0! + e^(-5) * (5^1) / 1!

= 0.0067 + 0.0337

= 0.0404

Therefore,

P(X ≥ 2) = 1 - P(X < 2)

= 1 - 0.0404

= 0.9596

Hence, the probability that there will be at least two new HIV infections in a 5 month period is 0.9596. Therefore, the correct option is (C) 0.9596.

Learn more about  probability  from

https://brainly.com/question/30390037

#SPJ11

An um consists of 5 green bals, 3 blue bails, and 6 red balis. In a random sample of 5 balls, find the probability that 2 blue balls and at least 1 red ball are selected. The probability that 2 blue balls and at least 1 red bat are selected is (Round to four decimal places as needed.)

Answers

The probability is approximately 0.0929. To find the probability that 2 blue balls and at least 1 red ball are selected from a random sample of 5 balls, we can use the concept of combinations.

The total number of ways to choose 5 balls from the urn is given by the combination formula: C(14, 5) = 2002, where 14 is the total number of balls in the urn.

Now, we need to determine the number of favorable outcomes, which corresponds to selecting 2 blue balls and at least 1 red ball. We have 3 blue balls and 6 red balls in the urn.

The number of ways to choose 2 blue balls from 3 is given by C(3, 2) = 3.

To select at least 1 red ball, we need to consider the possibilities of choosing 1, 2, 3, 4, or 5 red balls. We can calculate the number of ways for each case and sum them up.

Number of ways to choose 1 red ball: C(6, 1) = 6

Number of ways to choose 2 red balls: C(6, 2) = 15

Number of ways to choose 3 red balls: C(6, 3) = 20

Number of ways to choose 4 red balls: C(6, 4) = 15

Number of ways to choose 5 red balls: C(6, 5) = 6

Summing up the above results, we have: 6 + 15 + 20 + 15 + 6 = 62.

Therefore, the number of favorable outcomes is 3 * 62 = 186.

Finally, the probability that 2 blue balls and at least 1 red ball are selected is given by the ratio of favorable outcomes to total outcomes: P = 186/2002 ≈ 0.0929 (rounded to four decimal places).

Learn more about probability here : brainly.com/question/31828911

#SPJ11

Find the general solution of the differential equation.​ Then, use the initial condition to find the corresponding particular solution.
xy' =12y+x^13 cosx

Answers

The general solution of the differential equation is:

If x > 0:

[tex]y = (x sin(x) + cos(x) + C) / x^{12[/tex]

If x < 0:

[tex]y = ((-x) sin(-x) + cos(-x) + C) / (-x)^{12[/tex]

To find the general solution of the given differential equation [tex]xy' = 12y + x^{13} cos(x)[/tex], we can use the method of integrating factors. The differential equation is in the form of a linear first-order differential equation.

First, let's rewrite the equation in the standard form:

[tex]xy' - 12y = x^{13} cos(x)[/tex]

The integrating factor (IF) can be found by multiplying both sides of the equation by the integrating factor:

[tex]IF = e^{(\int(-12/x) dx)[/tex]

  [tex]= e^{(-12ln|x|)[/tex]

  [tex]= e^{(ln|x^{(-12)|)[/tex]

  [tex]= |x^{(-12)}|[/tex]

Now, multiply the integrating factor by both sides of the equation:

[tex]|x^{(-12)}|xy' - |x^{(-12)}|12y = |x^{(-12)}|x^{13} cos(x)[/tex]

The left side of the equation can be simplified:

[tex]d/dx (|x^{(-12)}|y) = |x^{(-12)}|x^{13} cos(x)[/tex]

Integrating both sides with respect to x:

[tex]\int d/dx (|x^{(-12)}|y) dx = \int |x^{(-12)}|x^{13} cos(x) dx[/tex]

[tex]|x^{(-12)}|y = \int |x^{(-12)}|x^{13} cos(x) dx[/tex]

To find the antiderivative on the right side, we need to consider two cases: x > 0 and x < 0.

For x > 0:

[tex]|x^{(-12)}|y = \int x^{(-12)} x^{13} cos(x) dx[/tex]

          [tex]= \int x^{(-12+13)} cos(x) dx[/tex]

          = ∫x cos(x) dx

For x < 0:

[tex]|x^{(-12)}|y = \int (-x)^{(-12)} x^{13} cos(x) dx[/tex]

          [tex]= \int (-1)^{(-12)} x^{(-12+13)} cos(x) dx[/tex]

          = ∫x cos(x) dx

Therefore, both cases can be combined as:

[tex]|x^{(-12)}|y = \int x cos(x) dx[/tex]

Now, we need to find the antiderivative of x cos(x). Integrating by parts, let's choose u = x and dv = cos(x) dx:

du = dx

v = ∫cos(x) dx = sin(x)

Using the integration by parts formula:

∫u dv = uv - ∫v du

∫x cos(x) dx = x sin(x) - ∫sin(x) dx

            = x sin(x) + cos(x) + C

where C is the constant of integration.

Therefore, the general solution to the differential equation is:

[tex]|x^{(-12)}|y = x sin(x) + cos(x) + C[/tex]

Now, to find the particular solution using the initial condition, we can substitute the given values. Let's say the initial condition is [tex]y(x_0) = y_0[/tex].

If [tex]x_0 > 0[/tex]:

[tex]|x_0^{(-12)}|y_0 = x_0 sin(x_0) + cos(x_0) + C[/tex]

If [tex]x_0 < 0[/tex]:

[tex]|(-x_0)^{(-12)}|y_0 = (-x_0) sin(-x_0) + cos(-x_0) + C[/tex]

Simplifying further based on the sign of [tex]x_0[/tex]:

If [tex]x_0 > 0[/tex]:

[tex]x_0^{(-12)}y_0 = x_0 sin(x_0) + cos(x_0) + C[/tex]

If [tex]x_0 < 0[/tex]:

[tex](-x_0)^{(-12)}y_0 = (-x_0) sin(-x_0) + cos(-x_0) + C[/tex]

Therefore, the differential equation's generic solution is:

If x > 0:

[tex]y = (x sin(x) + cos(x) + C) / x^{12[/tex]

If x < 0:

[tex]y = ((-x) sin(-x) + cos(-x) + C) / (-x)^{12[/tex]

Learn more about differential equation on:

https://brainly.com/question/25731911

#SPJ4

Over real numbers the following statement is True or False? (Exists y) (Forall x)(x y=x) True False

Answers

The statement "There (Exists y) (For all x) where (xy=x)" is False over real numbers.

Let us look at the reason why is it false.

Let's assume that both x and y are non-zero values, which means both have a real number value other than 0.

Since the equation says xy = x, we can cancel out the x term on both sides by dividing both right and left side with x, which results in y = 1.

So, for any non-zero x value, y equals 1.

However, this is only true for one specific value of y, that is when both x and y are equal to 1, which is not allowed in an "exists for all" statement.

Hence, the statement is False.

Learn more about Real Numbers: https://brainly.com/question/29052564

#SPJ11

In Problems 24-26, find the mathematical model that represents the statement. Deteine the constant of proportionality. 24. v varies directly as the square root of s.(v=24 when s=16.) 25. A varies jointly as x and y.(A=500 when x=15 and y=8.) 26. b varies inversely as a. (b=32 when a=1.5.)

Answers

The mathematical model is b = 48/a.

Here are the mathematical models that represent the statements in problems 24-26 with the constant of proportionality 24. v varies directly as the square root of s.(v=24 when s=16.)

The mathematical model that represents this statement is:

                            v=k√s

where k is the constant of proportionality.

The constant of proportionality k can be calculated by substituting the given values v = 24 and s = 16 into the formula:

        24=k√16

         k = 6

The constant of proportionality is 6.Therefore, the mathematical model is:

        v = 6√s25

A varies jointly as x and y.(A=500 when x=15 and y=8.)The mathematical model that represents this statement is:

        A=kxy

where k is the constant of proportionality. The constant of proportionality k can be calculated by substituting the given values A = 500, x = 15, and y = 8 into the formula:

  500=k(15)(8)

      k = 5/6

The constant of proportionality is 5/6.Therefore, the mathematical model is:

                    A = 5/6xy

b varies inversely as a. (b=32 when a=1.5.)

The mathematical model that represents this statement is:

                        b=k/a

where k is the constant of proportionality.

The constant of proportionality k can be calculated by substituting the given values b = 32 and a = 1.5 into the formula:

32=k/1.5, k = 48

The constant of proportionality is 48.Therefore, the mathematical model is: b = 48/a

To know more about mathematical model here:

https://brainly.com/question/28592940

#SPJ11

A consumer group claims that the average wait time at a facility exceeds 40 minutes. Write the appropriate null and alternative hypothesis to test the claim.
(you may use the Math editor ("") OR you may use these symbols: mu for population mean, >= for greater than or equal to, <= for less than or equal to, != for not equal to)

Answers

The hypothesis test will help determine if there is enough evidence to reject the null hypothesis in favor of the alternative hypothesis, indicating that the consumer group's claim about the average wait time exceeding 40 minutes is supported by the data.

The appropriate null and alternative hypotheses to test the claim are:

Null hypothesis (H0): The average wait time at the facility is equal to or less than 40 minutes.

Alternative hypothesis (Ha): The average wait time at the facility exceeds 40 minutes.

In symbols, it can be represented as:

H0: μ <= 40 (population mean is equal to or less than 40)

Ha: μ > 40 (population mean exceeds 40)

The null hypothesis assumes that the average wait time is no greater than 40 minutes, while the alternative hypothesis suggests that the average wait time is greater than 40 minutes. The hypothesis test will help determine if there is enough evidence to reject the null hypothesis in favor of the alternative hypothesis, indicating that the consumer group's claim about the average wait time exceeding 40 minutes is supported by the data.

Learn more about hypothesis test from

https://brainly.com/question/15980493

#SPJ11

What is the slope of (- 15 70 and 5 10?

Answers

The slope of the line passing through the points (-15, 7) and (5, 10) is 3/20.

To calculate the slope between two points, we use the formula:

slope = (change in y-coordinates) / (change in x-coordinates)

In this case, the given points are (-15, 7) and (5, 10). Let's calculate the change in the y-coordinates first.

Change in y-coordinates = y2 - y1

Substituting the values, we get:

Change in y-coordinates = 10 - 7 = 3

Now, let's calculate the change in the x-coordinates.

Change in x-coordinates = x2 - x1

Substituting the values, we get:

Change in x-coordinates = 5 - (-15) = 5 + 15 = 20

Now that we have both the change in y-coordinates and the change in x-coordinates, we can calculate the slope:

slope = (change in y-coordinates) / (change in x-coordinates)

= 3 / 20

To know more about slope here

https://brainly.com/question/14511992

#SPJ4

Complete Question:

What is the slope of (- 15,7) and (5,10)?

Suppose X has an exponential distribution with mean equal to 12. Determine the following:

(a) Upper P left-parenthesis x ⁢ greater-than 10 right-parenthesis (Round your answer to 3 decimal places.)

(b) Upper P left-parenthesis x ⁢ greater-than 20 right-parenthesis (Round your answer to 3 decimal places.)

(c) Upper P left-parenthesis x ⁢ less-than 30 right-parenthesis (Round your answer to 3 decimal places.)

(d) Find the value of x such that Upper P left-parenthesis Upper X ⁢ less-than x right-parenthesis equals 0.95. (Round your answer to 2 decimal places.)

Answers

The values are:

(a) Upper P (x ⁢> 10 ) = 0.593

(b) Upper P (x>20) = 0.135

(c) Upper P (x< 30) = 0.713

(d) x = 33.20

To solve the given problems, we need to use the cumulative distribution function (CDF) of the exponential distribution.

The CDF of an exponential distribution with mean μ is given by:

F(x) = 1 - [tex]e^{(-x/\mu)[/tex]

In this case, the mean is given as 12, so μ = 12.

(a) Upper P left-parenthesis x ⁢ greater-than 10 right-parenthesis:

To find the probability that X is greater than 10, we subtract the CDF value at x = 10 from 1:

Upper P left-parenthesis x ⁢ greater-than 10 right-parenthesis

= 1 - F(10)

= 1 - (1 - [tex]e^{(-10/12)[/tex])

= 0.593

(b) Upper P left-parenthesis x ⁢ greater-than 20 right-parenthesis:

Upper P left-parenthesis x ⁢ greater-than 20 right-parenthesis

= 1 - F(20)

= 1 - (1 - [tex]e^{(-20/12)[/tex])

= 0.135

(c) Upper P left-parenthesis x ⁢ less-than 30 right-parenthesis:

Upper P left-parenthesis x ⁢ less-than 30 right-parenthesis

= F(30)

= 1 - [tex]e^{(-30/12)[/tex]

= 0.713

(d) To find the value of x such that the probability of X being less than x is 0.95, we need to find the inverse of the CDF at the probability value:

0.95 = F(x) = 1 - [tex]e^{(-x/12)[/tex]

Solving for x:

[tex]e^{(-x/12)[/tex] = 1 - 0.95

            = 0.05

Taking the natural logarithm (ln) on both sides:

-x/12 = ln(0.05)

Solving for x:

x = -12  ln(0.05)

   = 33.20

Learn more about Logarithm here:

https://brainly.com/question/30226560

#SPJ4

Consider the sequence of numbers where each number in the sequence is obtained as a sum of two numbers:
.predecessor of a predecessor, and
.2 times the predecessor
while seed numbers are Fo= 0 and F₁ = 1.
a) Find the recursive algorithm for the given sequence of numbers.
b) Find the matrix equation for the general term (Fn) of the sequence.
c) Find the 23rd term of the sequence.

Answers

The 23rd term of the sequence is F₂₃ = 2097152.

a) The given sequence of numbers can be calculated using the recursive algorithm below:

Fo= 0,

F₁ = 1,

Fₙ = Fₙ₋₂ + 2

Fₙ₋₁Fₙ₊₁ = FₙFₙ₊₁= [0 1] [0 2] + [1 1] [1 0]

= [1 2] [1 1]

The matrix equation for the general term (Fn) of the sequence is given by:

[Fₙ Fₙ₊₁] = [0 1] [0 2]ⁿ⁻¹ [1 1] [1 0] [F₁₀ F₁₀₊₁]

= [0 1] [0 2]²² [1 1] [1 0] [F₂₂ F₂₂₊₁]

= [0 1] [0 2]²¹ [1 1] [1 0] [1 0] [0 1] [0 2]²¹ [1 1] [1 0] [1 0] [0 1] [0 2]²⁰ [1 1] [1 0] [1 0] [0 1] [2¹⁰ 2¹⁰] [1 1] [1 0] [17711 10946]

The 23rd term of the sequence is given by Fn where n = 23.

Thus, substituting n = 23 into the matrix equation [Fₙ Fₙ₊₁]

= [0 1] [0 2]ⁿ⁻¹ [1 1] [1 0],

We get: [F₂₃ F₂₃₊₁] = [0 1] [0 2]²² [1 1] [1 0] [F₂₃ F₂₃₊₁]

= [0 1] [4194304 2097152] [1 1] [1 0] [F₂₃ F₂₃₊₁]

= [2097152 2097153]

For more related questions on sequence:

https://brainly.com/question/30262438

#SPJ8

In a certain state, the sales tax T on the amount of taxable goods is 6% of the value of the goods purchased x, where both T and x are measured in dollars.
express T as a function of x.
T(x) =
Find T(150) and T(8.75).

Answers

The expression for sales tax T as a function of x is T(x) = 0.06x . Also,  T(150) = $9  and  T(8.75) = $0.525.

The given expression for sales tax T on the amount of taxable goods in a certain state is:

6% of the value of the goods purchased x.

T(x) = 6% of x

In decimal form, 6% is equal to 0.06.

Therefore, we can write the expression for sales tax T as:

T(x) = 0.06x

Now, let's calculate the value of T for

x = $150:

T(150) = 0.06 × 150

= $9

Therefore,

T(150) = $9.

Next, let's calculate the value of T for

x = $8.75:

T(8.75) = 0.06 × 8.75

= $0.525

Therefore,

T(8.75) = $0.525.

Hence, the expression for sales tax T as a function of x is:

T(x) = 0.06x

Also,

T(150) = $9

and

T(8.75) = $0.525.

Know more about the taxable goods

https://brainly.com/question/1160723

#SPJ11

Consider the following query. Assume empNo is the primary key and the table has a B+ tree index on empNo. The only known statistic is that 10% of employees have E numbers starting with ' 9 '. What is the most likely access method used to extract data from the table? SELECT empName FROM staffInfo WHERE empNo LIKE 'E9\%'; Full table scan Index Scan Build a hash table on empNo and then do a hash index scan Index-only scan Without having more statistics, it is difficult to determine

Answers

It should be noted that having more statistics such as the total number of employees and the selectivity of the query can help in determining the most appropriate access method.

Based on the given information, the most likely access method used to extract data from the table is an index scan.

Since there is a B+ tree index on empNo, it can be used to efficiently retrieve rows that satisfy the WHERE clause condition of empNo LIKE 'E9\%'. The index allows the database engine to locate the subset of rows that match the condition without having to scan the entire table.

A full table scan would be inefficient and unnecessary in this case since the table may contain a large number of rows, while an index-only scan is not possible as we are selecting a non-indexed column (empName).

Building a hash table on empNo and then doing a hash index scan is not necessary since there already exists a B+ tree index on empNo, which can be used for efficient access.

However, it should be noted that having more statistics such as the total number of employees and the selectivity of the query can help in determining the most appropriate access method.

Learn more about  number  from

https://brainly.com/question/27894163

#SPJ11

Assume that T is a linear transformation. Find the standard matrix of T.T:R3-R2 ,T(e1) = (1.5), and T(e2)=(-5,2), and T(e3) = (5,-6), where e1 e2 and e3 are the columns of the 3x3 identity matrix.
A= (Type an integer or decimal for each matrix element)

Answers

On solving, we find that the standard matrix A for T is

A = | T(e1)  T(e2)  T(e3) |/ |   1.5      -5         5     |/ |    0        2         -6    |

The standard matrix of the linear transformation T: R^3 -> R^2 can be obtained by arranging the images of the standard basis vectors of R^3 as columns. Given that T(e1) = (1.5), T(e2) = (-5, 2), and T(e3) = (5, -6), where e1, e2, and e3 are the columns of the 3x3 identity matrix, the standard matrix of T can be constructed as follows:

The standard matrix A for T is:

A = | T(e1)  T(e2)  T(e3) |

     |   1.5      -5         5     |

     |    0        2         -6    |

In the matrix A, the first column represents the image of the vector e1, the second column represents the image of the vector e2, and the third column represents the image of the vector e3 under the linear transformation T. The elements of the matrix A are obtained by arranging the corresponding components of the transformed vectors.

In this case, T is a linear transformation that maps a vector from R^3 to R^2. By arranging the given images of the standard basis vectors e1, e2, and e3 as columns of the standard matrix A, we can represent the linear transformation T in matrix form. The resulting matrix A allows us to apply T to any vector in R^3 by multiplying it with A, as the matrix-vector multiplication operation preserves the linear transformation properties.

Learn more about identity matrix here:

brainly.com/question/13595132

#SPJ11

Deterministic time Calculate a best upper bound (in Big O notation) on the expected running-time for generating random numbers p and g as described below: - pick a random m-bit integer q until p:=2q+1 is declared an (m+1) -bit Sophie-Germain prime. For simplicity, assume that Miller−Rabin(N,t) ran on a composite number N declares prime with probability exactly 4 −t
. - pick a random integer g,1≤g≤p−1, a primitive element of F p

. 1) Establish the value ϕ(p−1) as a function of q. 2) Express your expected time bound as a function of m and t. Assume all primality testing is done via Miller-Rabin (N,t) at cost O(m 3
t) time. Assume the probabilities that q and p be prime are independent.

Answers

In conclusion, the expected running time for generating random numbers p and g can be expressed as a function of m and t as follows:

[tex]O((1/(m ln(2))) * (m^3t)) = O(m^2t/ln(2))[/tex]

The expected time for generating the prime number p depends on the probability of q being prime and the number of iterations required to find a Sophie Germain prime. Since q is an m-bit integer, the probability of q being prime is approximately [tex]1/ln(2^m) = 1/(m ln(2)).[/tex]

The cost of performing Miller-Rabin primality testing on a composite number N is O([tex]m^3t[/tex]) time, as stated in the problem. Therefore, the expected time to find a prime q is proportional to the number of iterations required, which is 1/(m ln(2)).

Finding a primitive element g within the range 1 ≤ g ≤ p-1 involves randomly selecting integers and checking if they satisfy the condition. Since this step is independent of the primality testing, its time complexity is not affected by the value of t. Therefore, the expected time to find a primitive element g is not directly influenced by t.

To know more about random numbers,

https://brainly.com/question/32431671

#SPJ11

The height of a triangle is 8ft less than the base x. The area is 120ft2. Part: 0/3 Part 1 of 3 (a) Write an equation in tes of x that represents the given relationship. The equation is

Answers

The required equation in terms of x that represents the given relationship is x² - 8x - 240 = 0.

Given that the height of a triangle is 8ft less than the base x. Also, the area is 120ft². We need to find the equation in terms of x that represents the given relationship of the triangle. Let's solve it.

Step 1: We know that the formula to calculate the area of a triangle is, A = 1/2 × b × h, Where A is the area, b is the base, and h is the height of the triangle.

Step 2: The height of a triangle is 8ft less than the base x. So, the height of the triangle is x - 8 ft.

Step 3: The area of the triangle is given as 120 ft².So, we can write the equation as, A = 1/2 × b × hx - 8 = Height of the triangle, Base of the triangle = x, Area of the triangle = 120ft². Now substitute the given values in the formula to get an equation in terms of x.120 = 1/2 × x × (x - 8)2 × 120 = x × (x - 8)240 = x² - 8xSo, the equation in terms of x that represents the given relationship isx² - 8x - 240 = 0.

Let's learn more about triangle:

https://brainly.com/question/1058720

#SPJ11

Which set of values could be the side lengths of a 30-60-90 triangle?
OA. (5, 5√2, 10}
B. (5, 10, 10 √√3)
C. (5, 10, 102)
OD. (5, 53, 10)

Answers

A 30-60-90 triangle is a special type of right triangle where the angles are 30 degrees, 60 degrees, and 90 degrees. The sides of a 30-60-90 triangle always have the same ratio, which is 1 : √3 : 2.

This means that if the shortest side (opposite the 30-degree angle) has length 'a', then:

- The side opposite the 60-degree angle (the longer leg) will be 'a√3'.

- The side opposite the 90-degree angle (the hypotenuse) will be '2a'.

Let's check each of the options:

A. (5, 5√2, 10): This does not follow the 1 : √3 : 2 ratio.

B. (5, 10, 10√3): This follows the 1 : 2 : 2√3 ratio, which is not the correct ratio for a 30-60-90 triangle.

C. (5, 10, 10^2): This does not follow the 1 : √3 : 2 ratio.

D. (5, 5√3, 10): This follows the 1 : √3 : 2 ratio, so it could be the side lengths of a 30-60-90 triangle.

So, the correct answer is option D. (5, 5√3, 10).

Complete the square and find the vertex form of the quadratic function.
$$
f(x)=-x^2+8 x-68
$$
$$
f(x)=
$$

Answers

The quadratic function f(x) = -x^2 + 8x - 68 can be written in vertex form as f(x) = -(x - 4)^2 - 52, where the vertex is at (4, -52).

To complete the square and find the vertex form of the quadratic function f(x) = -x^2 + 8x - 68, we follow these steps:

Group the x^2 and x terms together:

f(x) = -(x^2 - 8x) - 68

To complete the square, take half of the coefficient of the x term (8/2 = 4), square it (4^2 = 16), and add it inside the parentheses:

f(x) = -(x^2 - 8x + 16 - 16) - 68

Rewrite the equation and simplify inside the parentheses:

f(x) = -(x^2 - 8x + 16) + 16 - 68

= -(x - 4)^2 - 52

The vertex form of a quadratic function is given by f(x) = a(x - h)^2 + k, where (h, k) represents the vertex.

Comparing with the equation we have, the vertex form of the quadratic function f(x) = -x^2 + 8x - 68 is:

f(x) = -(x - 4)^2 - 52

Therefore, the vertex form of the given quadratic function is f(x) = -(x - 4)^2 - 52.

To learn more about Complete the square visit:

https://brainly.com/question/13981588

#SPJ11

Sarah ordered 33 shirts that cost $5 each. She can sell each shirt for $12. She sold 26 shirts to customers. She had to return 7 shirts and pay a $2 charge for each returned shirt. Find Sarah's profit.

Answers

Based on given information, Sarah's profit is $98.

Given that Sarah ordered 33 shirts that cost $5 each, and she can sell each shirt for $12. She sold 26 shirts to customers and had to return 7 shirts and pay a $2 charge for each returned shirt.

Let's calculate Sarah's profit using the given details below:

Cost of 33 shirts that Sarah ordered = 33 × $5 = $165

Revenue earned by selling 26 shirts = 26 × $12 = $312

Total cost of the 7 shirts returned along with $2 charge for each returned shirt = 7 × ($5 + $2) = $49

Sarah's profit is calculated by subtracting the cost of the 33 shirts that Sarah ordered along with the total cost of the 7 shirts returned from the revenue earned by selling 26 shirts.

Profit = Revenue - Cost

Revenue earned by selling 26 shirts = $312

Total cost of the 33 shirts ordered along with the 7 shirts returned = $165 + $49 = $214

Profit = $312 - $214 = $98

Therefore, Sarah's profit is $98.

Learn more about Revenue visit:

brainly.com/question/4051749

#SPJ11

Jerry is considering offering a luxury escape from civilization at $900 per person. It would cost him $4210/week to rent a remote luxury resort for a week (that can hold up to 40 people) and $850 for each jeep he rents as this property cannot be reached by normal road vehicles. However, a jeep can accomodate at most 6 people.
Food and other variable costs will run $250 per person. How many paying clients would Jerehmiah need to break even for the luxury resort trip with 2 jeeps? If there is no way this trip could ever be profitable as configured, put 0 in for your answer.

Answers

Therefore, Jeremiah would need at least 18 paying clients to break even for the luxury resort trip with 2 jeeps.

To calculate the number of paying clients Jeremiah would need to break even for the luxury resort trip with 2 jeeps, we need to consider the costs and revenue involved.

Let's break down the costs and revenue:

Cost of renting the luxury resort: $4210 per week

Cost of renting each jeep: $850 per jeep

Cost of food and other variable costs per person: $250 per person

Revenue per person: $900 per person

Now, let's calculate the total costs:

Total cost = Cost of luxury resort + Cost of jeeps + Cost of food and variable costs

Total cost = $4210 + (2 * $850) + (40 * $250)

Next, let's calculate the total revenue:

Total revenue = Revenue per person x Number of paying clients

To break even, the total cost should be equal to the total revenue. So we can set up the equation:

Total cost = Total revenue

Substituting the values, we get:

$4210 + (2 * $850) + (40 * $250) = $900 * Number of paying clients

Now we can solve for the number of paying clients:

$4210 + $1700 + $10,000 = $900 * Number of paying clients

$15,910 = $900 * Number of paying clients

Number of paying clients = $15,910 / $900

Number of paying clients ≈ 17.68

Since we cannot have a fraction of a client, we need to round up to the nearest whole number.

To know more about break even,

https://brainly.com/question/11507297

#SPJ11

Find an equation for the line which is parallel to 2y+16x=4 and passes through the point (8,4). Write your answer in the form y=mx+b.

Answers

The given equation is 2y + 16x = 4. The line which is parallel to this line will have the same slope m and the y-intercept Slope of the line is -8 (negative of coefficient of x in the given equation).

Now we have a point (8,4) through which the line passes and we know the slope of the line which is -8. Therefore, we can find the y-intercept b by substituting the values in the slope-intercept form of a line: y = mx + b.

Substitute y = 4,

x = 8 and

m = -8 in the above equation

and solve for b. 4 = -8(8) + b =>

b = 68

Therefore, the equation for the line which is parallel to 2y + 16x = 4 and passes through the point (8,4) is y = -8x + 68. The given equation is 2y + 16x = 4.

We rewrite this equation in slope-intercept form: y = (-8/1)x + (1/2)

Therefore, the slope of the given line is -8.

Since the line that we are supposed to find is parallel to the given line, it will also have the same slope. Now, we have a point (8,4) through which the line passes and we know the slope of the line which is -8. Therefore, we can find the y-intercept b by substituting the values in the slope-intercept form of the line: y = mx + b

Substituting y = 4,

x = 8 and

m = -8 in the above equation,

we get:4 = -8(8) + b

Solving for b, we get: b = 68

Therefore, the equation of the line which is parallel to 2y + 16x = 4 and passes through the point (8,4) is: y = -8x + 68

To know more about equation visit:

https://brainly.com/question/29657992

#SPJ11

Any partition under what condition produces the best-case running time of O(nlg(n)) ? 2. Using a recurrence tree, prove question 2∣ for the recurrence T(n)=T(4n/5)+T(n/5)+cn

Answers

To achieve the best-case running time of O(n log n) in a sorting algorithm, such as QuickSort, the partition should evenly divide the input array into two parts. The proof using a recurrence tree shows that the given recurrence relation T(n) = T(4n/5) + T(n/5) + cn has a solution of T(n) = (5/3) * n * cn. Therefore, the running time in this case is O(n) rather than O(n log n).

To achieve the best-case running time of O(n log n) for a partition in a sorting algorithm like QuickSort, the partition should divide the input array into two equal-sized partitions. In other words, each recursive call should result in splitting the array into two parts of roughly equal sizes.

When the input array is evenly divided into two parts, the QuickSort algorithm achieves its best-case running time. This occurs because the partition step evenly distributes the elements, leading to balanced recursive calls. Consequently, the depth of the recursion tree will be approximately log₂(n), and each level will have a total work of O(n). Thus, the overall time complexity will be O(n log n).

Regarding question 2, let's use a recurrence tree to prove the given recurrence relation T(n) = T(4n/5) + T(n/5) + cn:

At each level of the recurrence tree, we have two recursive calls: T(4n/5) and T(n/5). The total work done at each level is the sum of the work done by these recursive calls plus the additional work done at that level, which is represented by cn.

```

               T(n)

             /     \

     T(4n/5)       T(n/5)

```

Expanding further, we get:

```

               T(n)

         /          |        \

 T(16n/25)  T(4n/25)  T(4n/25)  T(n/25)

```

Continuing this process, we have:

```

               T(n)

         /          |        \

 T(16n/25)  T(4n/25)  T(4n/25)  T(n/25)

  /   |  \

...  ...  ...

```

We can observe that at each level, the total work done is cn multiplied by the number of nodes at that level. In this case, the number of nodes at each level is a geometric progression, with a common ratio of 2/5, since we are splitting the array into 4/5 and 1/5 sizes at each recursive call.

Using the sum of a geometric series formula, the number of nodes at the kth level is (2/5)^k * n. Thus, the total work at the kth level is (2/5)^k * n * cn.

Summing up the work done at each level from 0 to log₅(4/5)n, we get:

T(n) = ∑(k=0 to log₅(4/5)n) (2/5)^k * n * cn

Simplifying the summation, we have:

T(n) = n * cn * (∑(k=0 to log₅(4/5)n) (2/5)^k)

The sum of the geometric series ∑(k=0 to log₅(4/5)n) (2/5)^k can be simplified as:

∑(k=0 to log₅(4/5)n) (2/5)^k = (1 - (2/5)^(log₅(4/5)n+1)) / (1 - 2/5)

Since (2/5)^(log₅(4/5)n+1) approaches 0 as n increases, we can simplify the above expression to:

T(n) = n * cn * (1 / (1 - 2/5))

T(n) = 5n * cn / 3

Therefore, we have proved that the given recurrence relation T(n) = T(4n/5) + T(n/5) + cn has a solution of T(n) = (5/3) * n * cn.

In conclusion, under the given recurrence relation and assumptions, the running time is O(n) rather than O(n log n).

To know more about sorting algorithm, refer to the link below:

https://brainly.com/question/13155236#

#SPJ11

Part C2 - Oxidation with Benedict's Solution Which of the two substances can be oxidized? What is the functional group for that substance? Write a balanced equation for the oxidation reaction with chr

Answers

Benedict's solution is commonly used to test for the presence of reducing sugars, such as glucose and fructose. In this test, Benedict's solution is mixed with the substance to be tested and heated. If a reducing sugar is present, it will undergo oxidation and reduce the copper(II) ions in Benedict's solution to copper(I) oxide, which precipitates as a red or orange precipitate.

To determine which of the two substances can be oxidized with Benedict's solution, we need to know the nature of the functional group present in each substance. Without this information, it is difficult to determine the substance's reactivity with Benedict's solution.

However, if we assume that both substances are monosaccharides, such as glucose and fructose, then they both contain an aldehyde functional group (CHO). In this case, both substances can be oxidized by Benedict's solution. The aldehyde group is oxidized to a carboxylic acid, resulting in the reduction of copper(II) ions to copper(I) oxide.

The balanced equation for the oxidation reaction of a monosaccharide with Benedict's solution can be represented as follows:

C₆H₁₂O₆ (monosaccharide) + 2Cu₂+ (Benedict's solution) + 5OH- (Benedict's solution) → Cu₂O (copper(I) oxide, precipitate) + C₆H₁₂O₇ (carboxylic acid) + H₂O

It is important to note that without specific information about the substances involved, this is a generalized explanation assuming they are monosaccharides. The reactivity with Benedict's solution may vary depending on the functional groups present in the actual substances.

To know more about Benedict's solution refer here:

https://brainly.com/question/12109037#

#SPJ11


Need help asap
Problem 5: Use the inverse transform technique to generate a random variate which has TRIA (2,4,8) distribution. Show all the steps in detail.

Answers

3. The resulting x is a random variate from the TRIA(2, 4, 8) distribution.

To generate a random variate from a triangular distribution using the inverse transform technique, we follow these steps:

Step 1: Determine the cumulative distribution function (CDF)

The cumulative distribution function (CDF) for a triangular distribution with parameters a, b, and c is given by:

F(x) = (x - a)² / ((b - a) * (c - a)),   if a ≤ x < c

F(x) = 1 - ((b - x)² / ((b - a) * (b - c))),   if c ≤ x ≤ b

F(x) = 0,   otherwise

In this case, a = 2, b = 4, and c = 8. Let's calculate the CDF for these values.

For a ≤ x < c:

F(x) = (x - a)² / ((b - a) * (c - a))

     = (x - 2)² / ((4 - 2) * (8 - 2))

     = (x - 2)² / 12,   if 2 ≤ x < 8

For c ≤ x ≤ b:

F(x) = 1 - ((b - x)² / ((b - a) * (b - c)))

     = 1 - ((4 - x)² / ((4 - 2) * (4 - 8)))

     = 1 - ((4 - x)² / (-4)),   if 8 ≤ x ≤ 4

Step 2: Find the inverse CDF

To generate random variates, we need to find the inverse of the CDF. Let's find the inverse CDF for the range 2 ≤ x ≤ 8.

For 2 ≤ x < 8:

x = (F(x) * 12)^(1/2) + 2

For 8 ≤ x ≤ 4:

x = 4 - ((1 - F(x)) * (-4))^(1/2)

Step 3: Generate random variates

Now, we can generate random variates by following these steps:

1. Generate a random number, u, between 0 and 1 from a uniform distribution.

2. If 0 ≤ u < F(8), calculate x using the inverse CDF for the range 2 ≤ x < 8.

  Otherwise, if F(8) ≤ u ≤ 1, calculate x using the inverse CDF for the range 8 ≤ x ≤ 4.

To know more about distribution visit:

brainly.com/question/32696998

#SPJ11

You have $96 to spend on campground activites. You can rent a paddleboat for $8 per hour and a kayak for $6 per hour. Write an equation in standard form that models the possible hourly combinations of activities you can afford and then list three possible combinations.

Answers

Three possible hourly combinations of activities are:(0, 16), (8, 12) and (16, 8). Let the number of hours for renting paddleboat be represented by 'x' and the number of hours for renting kayak be represented by 'y'.

Here, it is given that you have $96 to spend on campground activities. It means that you can spend at most $96 for these activities. And it is also given that renting a paddleboat costs $8 per hour and renting a kayak costs $6 per hour. Now, we need to write an equation in standard form that models the possible hourly combinations of activities you can afford.

The equation in standard form can be written as: 8x + 6y ≤ 96

To list three possible combinations, we need to take some values of x and y that satisfies the above inequality. One possible way is to take x = 0 and y = 16.

This satisfies the inequality as follows: 8(0) + 6(16) = 96

Another way is to take x = 8 and y = 12.

This satisfies the inequality as follows: 8(8) + 6(12) = 96

Similarly, we can take x = 16 and y = 8.

This also satisfies the inequality as follows: 8(16) + 6(8) = 96

Therefore, three possible hourly combinations of activities are:(0, 16), (8, 12) and (16, 8).

To know more about hours visit :

https://brainly.com/question/13349617

#SPJ11

31. Nonresponse A survey of drivers began by randomly sampling all listed residential telephone numbers in the United States. Of 45,956 calls to these numbers, 5029 were completed. The goal of the survey was to estimate how far people drive, on average, per day. 15 (a) What was the rate of nonresponse for this simple? (b) Explain how nonresponse can lead to bias in this survey. Be sure to give the direction of the bias.

Answers

a) the rate of nonresponse for this survey is approximately 89.14%.

(a) The rate of nonresponse for this survey can be calculated by dividing the number of incomplete calls (nonresponses) by the total number of attempted calls and multiplying by 100 to express it as a percentage.

Rate of nonresponse = (Number of incomplete calls / Total number of attempted calls) * 100

In this case, the number of incomplete calls (nonresponses) is 45,956 - 5,029 = 40,927.

Rate of nonresponse = (40,927 / 45,956) * 100 ≈ 89.14%

(b) Nonresponse can lead to bias in the survey because the individuals who did not respond may have different characteristics or behaviors compared to those who did respond. This can introduce selection bias, where the sample of respondents does not accurately represent the entire population of interest.

In the given survey, if nonresponse is related to the distance people drive per day, it can result in biased estimates of the average distance. For example, if individuals who drive longer distances are less likely to respond, the survey would underestimate the average distance driven per day.

The direction of the bias in this case would be towards underestimating the average distance driven. This is because the nonrespondents, who are more likely to have longer driving distances, are not included in the survey results. As a result, the survey may not capture the full range of driving distances, leading to an underestimated average.

To know more about Number visit:

brainly.com/question/3589540

#SPJ11

Find an approximate equation of the line that passes through the two gi slope -intercept form. Round the slope and the constant term to two dec. (-4.45,-8.31) and (7.14,-2.69)

Answers

The equation of the line that passes through (-4.45, -8.31) and (7.14, -2.69) in slope-intercept form is y = 0.49x - 0.59.

To find the equation of a line that passes through two given points, we use the two-point form equation of a line given by (y-y1)/(y2-y1) = (x-x1)/(x2-x1)  where (x1, y1) and (x2, y2) are the coordinates of the given points.

Here, the given two points are (-4.45, -8.31) and (7.14, -2.69).

Using the two-point form equation,

we have:

(y - (-8.31))/((-2.69) - (-8.31)) = (x - (-4.45))/(7.14 - (-4.45))(y + 8.31)/(5.62)

= (x + 4.45)/(11.59)y + 8.31

= (5.62/11.59)x + (4.45/11.59)y

= (5.62/11.59)x - (6.85/11.59)

Therefore, the approximate equation of the line that passes through the two given points is y = (5.62/11.59)x - (6.85/11.59).Rounding off to two decimal places, we get the slope as 0.49 and the constant term as -0.59. Thus, the equation of the line that passes through (-4.45, -8.31) and (7.14, -2.69) in slope-intercept form is y = 0.49x - 0.59.

know more about about slope-intercept here

https://brainly.com/question/30216543#

#SPJ11

What happens when we multiply both the numerator and denominator
of ¾ each by 2? Show (with a picture or number line) and explain
(with words) what happens to each piece of ¾, specifically. How can

Answers

The numerator 3 becomes 6, which represents the new length of the line segment. The denominator 4 becomes 8, which represents the new total length of the number line.

When we multiply both the numerator and denominator of 3/4 by 2, we obtain:

(3/4) * (2/2) = 6/8

Visually, we can represent 3/4 as a line segment on a number line that starts at 0 and ends at 3/4. When we multiply both the numerator and denominator by 2, we are essentially scaling this line segment by a factor of 2 in both directions. The new line segment will start at 0 and end at 6/8, which is equivalent to 3/4.

0-------------------3/4-------------------1

0-------------------6/8-------------------1

In terms of the pieces of 3/4, we can think of the numerator 3 as representing the length of the line segment, and the denominator 4 as representing the total length of the number line. When we multiply both the numerator and denominator by 2, we are effectively doubling the length of the line segment while also doubling the total length of the number line. As a result, each piece of 3/4 is scaled by a factor of 2:

The numerator 3 becomes 6, which represents the new length of the line segment.

The denominator 4 becomes 8, which represents the new total length of the number line.

In general, multiplying both the numerator and denominator of a fraction by the same non-zero value is equivalent to scaling the fraction by that value. The resulting fraction represents the same quantity as the original fraction, but is expressed in different terms. In this case, 6/8 is equivalent to 3/4, but is expressed in terms of eighths rather than quarters.

Learn more about " line segment" : https://brainly.com/question/17374569

#SPJ11

Other Questions
QUESTION TWO The directors of Greenwood Industries have appointed you as their financial consultant. They are seeking new investment opportunities and require you to calculate their weighted average cost of capital of the company. The following information relates to the present capital structure of the company: 2 million, ordinary shares, currently trading at R5.50 per share. The latest dividend paid is 80 cents per share and the growth for the past four years was 7% per annum. 1 million, 9%, R3.00 preference shares, with a market price of R2.00 each. R600 000, 14%, bank loan, due in December 2021. Additional information: The company is in the 30% tax bracket. The company has a beta of 1.4, a risk free rate of 6% and a return on the market of 18%. Required: 2.1 Calculate the weighted average cost of capital. Use the Gordon Growth Model to calculate the cost of equity. (21) 2.2 Calculate the weighted cost of equity, using the Capital Asset Pricing Model. Find the extremum of f(x,y) subject to the given constraint, and state whether it is a maximum or a minimum. f(x,y)=2y^25x^2 ;4x+y=81 . The muscles you use to make a fist are called 6. The muscle that pulls lip corners down in a frown is 7. The muscle you contract to shrug your shoulders is 8. The muscle you use to turn your head is 9. Name 2 antagonists of Latissimus dorsi: and 10. The facial muscle that allows you to purse your lips is called 11. The muscle that flexes the forearm is 12. Which muscle do you use to abduct the thigh? 13. The muscle that extends the forearm is 14. The 2 respiratory muscles are 15. The muscles that runs along the spine and keeps the back up right, is called 16. Which abdominal muscle is only in the front of the abdomen? 3. Prove that the angles of a convex spherical polygon satisfy A1+A2++An(n2)=S/R2, where A1,A2,An are the angles, and S the area of the polygon. 5.9.1 show that a function that has the darboux property cannot have either removable or jump discontinuities. The median of three numbers is 4. The mode is 3 and set of numbers is 9. Find the range Which of the following statements regarding the statement of cash flows are correct? The financial statement that is typically prepared first It is an optional financial statement Reports cash disbursements The final financial statement that is typically prepared Reports cash receipts Issue that prevents mango production from contributing to Bangladesh's economy. Discuss on this given point*Mango syndicate*lack of proper research on mango*lack of cultivation land*proper training for production*transportation problem*cost of production*proper way of storing mango*formalin on mango thats why people are avoiding A bank offers a home buyer a 25 -year loan at 9% per year. If the home buyer borrows $110,000 from the bank, how much must be repaid every year? A. $11,198.69 B. $15,678.17 C. $17,917.90 D. $13,438.43 Consider the following example for a binomial distribution. Identify the value of "X." You have a perfectly shuffled deck of 52 cards (containing 13 cards in each of the 4 different suits: hearts, clubs, spades, and diamonds) Given that you draw 5 cards, you are interested in the probability that exactly 2 of them are diamonds. 4 1/4 2/5 Suppose the demand curve for a product is given by*i Q = 300 - 2P + 4I, where I is average income mea-sured in thousands of dollars. The supply curve isa. If I = 25, find the market-clearing price and quan-tity for the product.b. IfI = 50, find the market-clearing price and quan-tity for the product.c. Draw a graph to illustrate your answers. devops engineers are developing an order processing system where notifications are sent to a department whenever an order is placed for a product. the system also pushes identical notifications of the new order to a processing module that would allow ec2 instances to handle the fulfillment of the order. in the case of processing errors, the messages should be allowed to be re-processed at a later stage. the order processing system should be able to scale transparently without the need for any manual or programmatic provisioning of resources. The presidential pardon power is? For the following grammar given below, remove left recursion from it: SABCAAaAdbBBdeCCCg Please provide the executable and running code with IDE for Pascal. All 3 test cases should be running and provide correct output:A program transforms the infix notation to postfix notation and then evaluate the postfix notation. The program should read an infix string consisting of integer number, parentheses and the +, -, * and / operators. Your program should print out the infix notation, postfix notation and the result of the evaluation. After transforming and evaluating an algorithm it should loop and convert another infix string. In order to solve this problem, you need have a STACK package. You can use array or liked list for implementing the STACK package. If you need algorithms to transform infix notation to the postfix notation and to evaluate postfix notation, you data structure book, Chapter 4 of Richard F. Gilbergs data structure book. The test following infix strings are as follows:5 * 6 + 4 / 2 2 + 9(2 + 1) / (2 + 3) * 1 + 3 (1 + 2 * 1)(3 * 3) * 6 / 2 + 3 + 3 2 + 5 An instrument that transfers title in which one sells real estate for a price in current money and the other gives the price in order to have the real estate is called aSelect one:A. ConveyanceB. Contract to SellC. Purchase AgreementD. All of the above help pleaseConsider the folowing data for the United Siates: 'Reai-lime data provided by Federal Reserve Economic Date (FRED), Federal Reserve Bank of Saint Lous. The percentage change in real GDP from 2018 to \ (a) If ER and E>0, does it follow that there exists a nonempty open set UE? (b) Use part (a) of this exercise to prove or disprove the following analogue of the preceding exercise: Assume that ER and E Equipment was purchased for $75,000, with an expected useful life of 15 years, and a $3,000 salvage value. Using straight-line depreciation, show your calculation to determine its accumulated depreciation at the end of its 10 th year. Use brackets if necessary.___________ Assume that you have $20,201 to invest in a term deposit, and there are three options for your choice as follow:A 90-day deposit that has a maturity value of $21,538A 130-day deposit that has a maturity value of $21,800A 145-day deposit that has a maturity value of $21,958Required:Calculate the implied investment yield (percentage per annum) you can earn with each option.