survey or measure 10 people to find their heights. determine the mean and standard deviation for the 20 values by using the week 3 excel spreadsheet. post a screen shot of the portion of the spreadsheet that helped you determine these values. how does your height compare to the mean (average) height of the 20 values? is your height taller, shorter, or the same as the mean of the sample?

Answers

Answer 1

The mean and standard deviation of the heights of 10 people were determined using an Excel spreadsheet. If your height is less than the mean, then you are shorter than the average height.

To calculate the mean height, you need to sum up all the heights and divide the total by the number of values. The standard deviation measures the spread of the heights from the mean. You can use the following steps in Excel to calculate these values:

Enter the 10 height values in a column, say column A.

In an empty cell, use the formula "=AVERAGE(A1:A10)" to calculate the mean height.

In another empty cell, use the formula "=STDEV(A1:A10)" to calculate the standard deviation of the heights.

Comparing your height to the mean height of the sample depends on your own height. If your height is greater than the mean, then you are taller than the average height of the 10 people. If your height is less than the mean, then you are shorter than the average height. If your height is equal to the mean, then you have the same height as the average height of the sample.

Learn more about deviation here:

https://brainly.com/question/31835352

#SPJ11


Related Questions

Find the maximum rate of change of r at the given point and the direction in which it occurs. r(x,y)=2y 2
;x,(1,2) maxivin rate of change diraction

Answers

According to the question The maximum rate of change of [tex]\(r\)[/tex] at the point [tex]\((1, 2)\)[/tex] is 8, and it occurs in the direction of the gradient vector [tex]\((0, 8)\)[/tex].

To find the maximum rate of change of the function [tex]\(r(x, y) = 2y^2\)[/tex] at the point [tex]\((1, 2)\)[/tex] and the direction in which it occurs, we can calculate the gradient vector and evaluate it at the given point.

The gradient vector [tex]\(\nabla r\)[/tex] of a function [tex]\(r(x, y)\)[/tex] is defined as:

[tex]\(\nabla r = \left(\frac{\partial r}{\partial x}, \frac{\partial r}{\partial y}\right)\)[/tex]

First, let's find the partial derivatives of [tex]\(r\)[/tex] with respect to [tex]\(x\)[/tex] and [tex]\(y\):[/tex]

[tex]\(\frac{\partial r}{\partial x} = 0\) (since \(r\) does not contain \(x\) terms)[/tex]

[tex]\(\frac{\partial r}{\partial y} = 4y\)[/tex]

The gradient vector is then:

[tex]\(\nabla r = (0, 4y)\)[/tex]

Now we can evaluate the gradient vector at the given point [tex]\((1, 2)\):[/tex]

[tex]\(\nabla r(1, 2) = (0, 4 \cdot 2) = (0, 8)\)[/tex]

The magnitude of the gradient vector represents the maximum rate of change of the function, and the direction of the gradient vector indicates the direction in which this maximum rate of change occurs. To find the magnitude of the gradient vector, we can use the Euclidean norm:

[tex]\(|\nabla r(1, 2)| = \sqrt{(0)^2 + (8)^2} = \sqrt{64} = 8\)[/tex]

So, the maximum rate of change of [tex]\(r\)[/tex] at the point [tex]\((1, 2)\)[/tex] is 8, and it occurs in the direction of the gradient vector [tex]\((0, 8)\)[/tex].

To know more about vector visit-

brainly.com/question/14349696

#SPJ11

taking the persistence length of a microtubule to be 2mm, what is the energy required (in kbt) to bend a microtubule of length 20cm into an arc of radius 10cm?

Answers

The energy required to bend a microtubule of length 20 cm into an arc of radius 10 cm can be calculated using the persistence length of the microtubule.

The persistence length is a measure of the stiffness of a polymer, and for a microtubule with a persistence length of 2 mm, the energy required can be determined. In the case of bending a microtubule, the energy can be expressed in units of kBT (Boltzmann constant times temperature).

To calculate the energy, we can consider the microtubule as a flexible rod with a persistence length of 2 mm. The energy required to bend the rod into an arc can be approximated using the worm-like chain model, which describes the behavior of flexible polymers. The energy can be calculated using the formula:

[tex]\[E = \frac{{k_BT L^2}}{{2P}} \left(1 - \sqrt{1 - \frac{{4PR}}{{L^2}}} \right)\][/tex]

where E is the energy, [tex]k_B[/tex] is the Boltzmann constant, T is the temperature, L is the length of the microtubule, P is the persistence length, and R is the radius of the arc. Plugging in the values ([tex]k_B = 1.38 \times 10^{-23} J/K[/tex], T = temperature in Kelvin, L = 20 cm = 0.2 m, P = 2 mm = 0.002 m, R = 10 cm = 0.1 m), we can calculate the energy in units of kBT.

To learn more about microtubule refer:

https://brainly.com/question/13425820

#SPJ11

7. Line MN is dilated by a scale factor of 2 centered at the point (0,6). If MN is represented by y=-3x +6 , which equation can represent M'N', the image of MN ? (1) y=-3x+12 (2) y=-3x + 6 (3) y = -6x +12 (4) y = -6x + 6

Answers

The equation that represents M'N' is y = -3x + 6.

When a line is dilated by a scale factor of 2 centered at the point (0,6), the new line will have the same slope but the y-intercept will change.

Given that the equation of the line MN is y = -3x + 6, the slope remains the same, which is -3.

The center of dilation is (0,6), so any point on the original line that has a y-coordinate of 6 will remain the same after dilation.

Let's substitute the coordinates of point M (x = 0, y = 6) into the equation:

y = -3x + 6

6 = -3(0) + 6

6 = 6

The y-coordinate remains unchanged, indicating that the line M'N' will also pass through the point (0,6).

Therefore, the equation that represents M'N' is y = -3x + 6.

Learn more about Scale Factor here:

https://brainly.com/question/29464385

#SPJ4

Given f'(x)=4cosx−7sinx and f(0)=3, find f(x)

Answers

The required function is found to be f(x) = 4sin(x) + 7cos(x) - 4.

We have been given

f'(x)=4cosx−7sinx

and

f(0)=3

we need to find f(x).

Now, since the derivative of f(x) with respect to x is given by f′(x),

we need to obtain the function f(x) by integrating f′(x) with respect to x.

Thus,

f(x) = ∫f′(x)dx

f(x) = ∫(4cosx − 7sinx)dx

= 4sin x + 7cos x + C

Where C is a constant of integration that we need to determine using the condition that f(0) = 3.

Thus,

3 = f(0)

= 4sin(0) + 7cos(0) + C

= 7 + C.

So, C = -4

Thus, f(x) = 4sin(x) + 7cos(x) - 4, is the required function.

Know more about the function

https://brainly.com/question/11624077

#SPJ11

Find the center of mass of the hemisphere z=4−x2−y2 if the density is proportional to the distance from the center. A. (0,0,56​) B. (0,0,54​) C. (0,0,1516​) D. (0,0,1514​)

Answers

The center of mass of the hemisphere can be found by evaluating the

triple integral

of the density function multiplied by the position vector (x, y, z) over the volume of the hemisphere. By solving the integral, we find that the center of mass is (0, 0, 15/16), so the answer is option the center of mass of the hemisphere, we need to evaluate the

triple integral

of the density function multiplied by the position vector (x, y, z) over the volume of the hemisphere. The density is proportional to the distance from the center, so we can express the density as δ(x, y, z) = kρ, where ρ represents the distance from the

origin

(center) and k is a constant.

The

equation

of the hemisphere is given as z = 4 - x^2 - y^2. We want to find the center of mass, which corresponds to the point (x_cm, y_cm, z_cm).

The center of

mass

is determined by the following formulas:

x_cm = (1/M) ∫∫∫ x δ(x, y, z) dV

y_cm = (1/M) ∫∫∫ y δ(x, y, z) dV

z_cm = (1/M) ∫∫∫ z δ(x, y, z) dV

where M represents the total mass.

To evaluate the integrals, we can convert to

spherical

coordinates. In spherical coordinates, the position vector (x, y, z) is given as:

x = ρ sinφ cosθ

y = ρ sinφ sinθ

z = ρ cosφ

The

volume

element in spherical coordinates is given as dV = ρ² sinφ dρ dφ dθ.

Substituting the position vector and volume element into the formulas for x_cm, y_cm, and z_cm, we have:

x_cm = (1/M) ∫∫∫ (ρ sinφ cosθ)(kρ)(ρ² sinφ) dρ dφ dθ

y_cm = (1/M) ∫∫∫ (ρ sinφ sinθ)(kρ)(ρ² sinφ) dρ dφ dθ

z_cm = (1/M) ∫∫∫ (ρ cosφ)(kρ)(ρ² sinφ) dρ dφ dθ

Simplifying and rearranging the

integrals

, we get:

x_cm = (k/M) ∫∫∫ ρ⁴ sin²φ cosθ dρ dφ dθ

y_cm = (k/M) ∫∫∫ ρ⁴ sin²φ sinθ dρ dφ dθ

z_cm = (k/M) ∫∫∫ ρ³ cosφ sin²φ dρ dφ dθ

To solve these integrals, we need to determine the

limits of integration

. Since we are considering a hemisphere, the limits for ρ, φ, and θ are as follows:

ρ: 0 to the

radius

of the hemisphere, which is 2 (since z = 4 - x^2 - y^2)

φ: 0 to π/2 (since we are considering the upper half of the hemisphere)

θ: 0 to 2π (covering the entire circular base)

After evaluating the integrals, we find that x_cm = y_cm = 0 and z_cm = 15/16.

The

center of mass

of the hemisphere is (0, 0, 15/16). Thus, the correct answer is option C: (0, 0, 15/16).

To learn more about

center of mass

brainly.com/question/27549055

#SPJ11

Find a function y=f(x) whose second derivative is y'=12x-2 at each point (x, y) on its graph and y= -x+5 is tangent to the graph at the point corrsponding to x=1
Please provide clear steps!

Answers

the function y = f(x) that satisfies the given conditions is y = 2x^3 - x^2 - 5x + C2, where C2 is a constant that can take any real value.

First, integrate y' with respect to x to find the first derivative y:

∫(y') dx = ∫(12x - 2) dx

y = 6x^2 - 2x + C1

Next, integrate y with respect to x to find the function f(x):

∫y dx = ∫(6x^2 - 2x + C1) dx

f(x) = 2x^3 - x^2 + C1x + C2

To determine the specific values of C1 and C2, we use the given condition that the line y = -x + 5 is tangent to the graph at x = 1.

Since the tangent line has the same slope as the function f(x) at x = 1, we can equate their derivatives:

f'(1) = -1

Taking the derivative of f(x), we have:

f'(x) = 6x^2 - 2x + C1

Substituting x = 1 and equating f'(1) to -1, we can solve for C1:

6(1)^2 - 2(1) + C1 = -1

6 - 2 + C1 = -1

C1 = -5

Now we have the values of C1 and C2. Plugging them back into the equation for f(x), we obtain the final function:

f(x) = 2x^3 - x^2 - 5x + C2

To learn more about tangent line : brainly.com/question/23416900

#SPJ11

Select the correct answer.
Royce has $15 with him and spends $12 to buy his favorite comics. He has $3 left, which he deposits in the bank. Which number will be entered in Royce's bank account statement?

A.
-$12
B.
-$3
C.
+$3
D.
+$15

Answers

Answer:

C. +3 will be deposited into his account

Answer:

He deposits this $3 in the bank. Therefore, the number entered in Royce's bank account statement will be: $\boxed{+\$3}$. So, the correct answer is C. +$3.

....................................geometry

Answers

The measure of the missing side length x in the right triangle is approximately 2.7.

What is the measure of side length x?

The figure in the image is a right triangle with one of interior angle at 90 degrees.

From the figure:

Angle θ = 67 degrees

Hypotenuse = 7

Adjacent to angle θ = x

To solve for the missing side length x, we use the trigonometric ratio.

Note that: cosine = adjacent / hypotenuse

Hence:

cos( θ ) = adjacent / hypotenuse

Plug in the values and solve for x:

cos( 67 ) = x / 7

Cross multiplying, we get:

x = cos( 67 ) × 7

x = 2.7

Therefore, the value of x is 2.7.

Learn more about trigonometric ratio here: brainly.com/question/28016662

#SPJ1

Use a geometric argument to find the definite integral 1 f(x) dx where 6 {2-²² 2x if x = [0, 4] if x € (4, 10] 6 (Hint: plot the graph of f(x).) f(x) ="

Answers

The definite integral of f(x) over the interval [0, 10] is equal to 52. To find the definite integral of the function f(x) over the interval [0, 10], we need to split the integral into two parts.

From x = 0 to x = 4 and from x = 4 to x = 10. First, let's plot the graph of f(x) to visualize the function:

For x in [0, 4], the function is given by f(x) = 2 - 2x. This is a linear function with a negative slope and a y-intercept of 2. When x = 0, f(x) = 2, and when x = 4, f(x) = 2 - 2(4) = -6. So, the graph of f(x) in this interval is a line segment connecting the points (0, 2) and (4, -6).

For x in (4, 10], the function is given by f(x) = 6. This is a horizontal line at y = 6.

Now, let's find the area under the curve for each part separately:

1. Area from x = 0 to x = 4:

This is the area under the line segment connecting (0, 2) and (4, -6). Since the function is a straight line, the area can be calculated as the area of a trapezoid. The formula for the area of a trapezoid is given by A = (1/2)(b1 + b2)h, where b1 and b2 are the lengths of the parallel sides and h is the height (or the difference in the y-values).

In this case, b1 = 2 (corresponding to the y-value at x = 0) and b2 = -6 (corresponding to the y-value at x = 4). The height, h, is the difference between these two y-values, which is h = -6 - 2 = -8.

Plugging these values into the formula, we have:

A1 = (1/2)(2 + (-6))(-8) = (1/2)(-4)(-8) = 16.

So, the area from x = 0 to x = 4 is 16 square units.

2. Area from x = 4 to x = 10:

This is simply the area of the rectangle formed by the horizontal line at y = 6 and the interval from x = 4 to x = 10. The width of the rectangle is 10 - 4 = 6 units, and the height is 6 units.

The area of the rectangle is given by:

A2 = width × height = 6 × 6 = 36.

So, the area from x = 4 to x = 10 is 36 square units.

Finally, to find the total area, we sum the areas from the two parts:

Total area = A1 + A2 = 16 + 36 = 52.

Therefore, the definite integral of f(x) over the interval [0, 10] is equal to 52.

Learn more about area here: https://brainly.com/question/27683633

#SPJ11

please help 11:30 its due questions 19 and 20 please
In Exercises 19-20, use the definition to compute the derivathves of the following functions. 19. \( f(x)=5 x^{2} \) 20. \( f(x)=(x-2)^{3} \)

Answers

The derivatives of the given functions are: 19.f'(x) = 10x , 20.f'(x) = 3(x-2)^2

To find the derivative of f(x) = 5x^2 using the definition of the derivative, we need to evaluate the limit as h approaches 0 of [f(x+h) - f(x)] / h. Substitute the function into the definition:

[f(x+h) - f(x)] / h = [5(x+h)^2 - 5x^2] / h

Expand and simplify the numerator:

[5(x^2 + 2xh + h^2) - 5x^2] / h = [5x^2 + 10xh + 5h^2 - 5x^2] / h

Cancel out the common terms:

(10xh + 5h^2) / h = 10x + 5h

Take the limit as h approaches 0:

lim(h->0) (10x + 5h) = 10x

Therefore, the derivative of f(x) = 5x^2 is f'(x) = 10x.

f'(x) = 3(x-2)^2

To find the derivative of f(x) = (x-2)^3 using the definition of the derivative, we need to evaluate the limit as h approaches 0 of [f(x+h) - f(x)] / h. Substitute the function into the definition:

[f(x+h) - f(x)] / h = [(x+h-2)^3 - (x-2)^3] / h

Expand the numerator:

[(x^3 + 3x^2h + 3xh^2 + h^3 - 6x^2 - 12xh + 12) - (x^3 - 6x^2 + 12x - 8)] / h

Simplify and cancel out the common terms:

(3x^2h + 3xh^2 + h^3 + 12) / h = 3x^2 + 3xh + h^2 + 12/h

Take the limit as h approaches 0:

lim(h->0) (3x^2 + 3xh + h^2 + 12/h) = 3x^2

Therefore, the derivative of f(x) = (x-2)^3 is f'(x) = 3(x-2)^2.

learn more about derivative here:

https://brainly.com/question/25324584

#SPJ11

1.Find an equation of the plane. the plane through the points (0,2,2),(2,0,2), and (2,2,0). 2. Find an equation of the plane. the plane through the origin and the points (6,−4,3) and (1,1,1). 3.Find an equation of the plane. the plane that passes through the point (3,6,−1) and contains the line x=4−t,y=2t−1,2=−3t.

Answers

The equation of plane is found as : 12(x - 3) + y - z = 0, or  12x + y - z = 36.

1. Find an equation of the plane. The plane through the points (0,2,2),(2,0,2), and (2,2,0).

Three non-collinear points uniquely define a plane in a three-dimensional space. In order to find the equation of a plane, we will first determine the normal vector to the plane, and then use the point-normal form of the equation of a plane.

First, we'll find two vectors in the plane by subtracting the position vectors of two pairs of points in the plane:

(2-0)i + (0-2)j + (2-2)k

= 2i - 2j(2-0)i + (2-2)j + (0-2)k

= 2k(0-2)i + (2-2)j + (2-0)k

= -2i + 2k

Since the normal vector to the plane is orthogonal to any two non-collinear vectors in the plane, we take the cross product of two such vectors to obtain the normal vector to the plane:

(2i - 2j) × (2k) = 4i + 4j + 4k = 4(i + j + k)

So, the equation of the plane is:

4(x + y + z) = 0.2.

Find an equation of the plane. The plane through the origin and the points (6,−4,3) and (1,1,1).

We will use the cross product of two vectors in the plane to obtain a normal vector, and then use the point-normal form of the equation of a plane.

The two vectors are obtained by subtracting the position vector of the origin from the position vectors of the given points:

(6-0)i + (-4-0)j + (3-0)k

= 6i - 4j + 3k(1-0)i + (1-0)j + (1-0)k

= i + j + k

The cross product of these vectors is:

(6i - 4j + 3k) × (i + j + k) = 7i - 9j - 10k

So, the equation of the plane is 7

x - 9y - 10z = 0.3.

Find an equation of the plane.

The plane that passes through the point (3,6,−1) and contains the line x=4−t,y=2t−1,z=−3t.

In order to find the equation of the plane, we will first find two non-collinear vectors that lie in the plane. We already know one such vector, which is the direction vector of the given line.

We can take any vector orthogonal to this vector as the second vector. The cross product of the direction vector of the given line and a vector orthogonal to it will provide us with such a vector.

For example, we can take the vector <1,1,1> as such a vector.

The direction vector of the line is < -1, 2, -3 >.

The cross product of these vectors is < -5, -2, 3 >.

So, two non-collinear vectors in the plane are < -1, 2, -3 > and < -5, -2, 3 >.

Let's take the point (3,6,-1) as a point on the plane.

A normal vector to the plane is obtained by taking the cross product of these two vectors:

< -1, 2, -3 > × < -5, -2, 3 > = < 0, -12, -12 > = 12 < 0, 1, 1 >.

Know more about the equation of plane

https://brainly.com/question/30655803

#SPJ11

Find the area of the regions bounded by the given curve, and properly sketch the region. 1. \( y=x^{2}, y=8-x^{2} \) and \( y=4 x+12 \) 2. \( x^{2} y=1, y=x \) and \( y=4 \)

Answers

To find the area of the regions bounded by the given curves, we need to determine the intersection points of the curves and integrate the appropriate functions over the corresponding intervals. Once we have the intersection points, we can sketch the region and calculate the area using definite integrals.

For the first problem, we have three curves: y = x^2, y = 8 - x^2, and y = 4x + 12. To find the intersection points, we set the equations equal to each other and solve for x. By solving the resulting equations, we find the x-values where the curves intersect. We then integrate the appropriate functions over the corresponding intervals to find the area of each region. Finally, we add the areas of the individual regions to get the total area of the bounded region.
For the second problem, we have two curves: x^2y = 1, y = x, and y = 4. We find the intersection points by setting the equations equal to each other and solving for x. After obtaining the x-values, we integrate the appropriate functions to find the areas of the individual regions. The area of the region bounded by the curves is the sum of the areas of these regions.
In both cases, sketching the region is essential to visualize the curves and understand the boundaries. It helps in identifying the intervals over which we need to integrate to find the areas accurately. By following these steps, we can determine the area of the regions bounded by the given curves.

Learn more about area of the region here
https://brainly.com/question/32301637



#SPJ11

Water flows into a tank at a rate r(t)=34​327−t​ zallons per minute, for 0≤t≤27. Find the total amount of water entering the tank during the time interval rom t=19 to t=27 minutes. Include the units of measurement in your answer.

Answers

The total amount of water entering the tank during the time interval from t = 19 to t = 27 minutes is 80,565 gallons.

To find the total amount of water entering the tank during the time interval from t = 19 to t = 27 minutes, we need to integrate the rate function r(t) over that interval.

The rate function is given as r(t) = 34,327 - t gallons per minute.

The integral of the rate function over the interval [19, 27] gives us the total amount of water entering the tank:

∫[19,27] (34,327 - t) dt

Evaluating this integral, we get:

∫[19,27] (34,327 - t) dt = [34,327t - (t^2/2)] evaluated from t = 19 to t = 27

Plugging in the values, we have:

[34,327(27) - (27^2/2)] - [34,327(19) - (19^2/2)]

Simplifying this expression, we get:

[925,329 - 364.5] - [651,913 - 171.5]

= 560,965 - 480,400

= 80,565 gallons

Therefore, the total amount of water entering the tank during the time interval from t = 19 to t = 27 minutes is 80,565 gallons.

Learn more about calculus here:

https://brainly.com/question/30489954

#SPJ11

find the function f(x) if f'(x)=5sin(x)+8 and f(0)=-3

Answers

The function f(x) can be determined by integrating its derivative f'(x) and applying the given initial condition. The solution is f(x) = -5cos(x) + 8x - 3.

Given that f'(x) = 5sin(x) + 8, we can integrate f'(x) to find the original function f(x). Integrating 5sin(x) gives us -5cos(x), and integrating 8 gives us 8x. Therefore, the indefinite integral of f'(x) is f(x) = -5cos(x) + 8x + C, where C is the constant of integration.

To determine the specific value of the constant C, we use the initial condition f(0) = -3. Substituting x = 0 into the equation, we get -5cos(0) + 8(0) + C = -3. Simplifying, we find -5 + C = -3, which implies C = 2.

Therefore, the final function f(x) is f(x) = -5cos(x) + 8x - 3. This function satisfies the given derivative f'(x) = 5sin(x) + 8 and the initial condition f(0) = -3.

Learn more about derivatives here:

https://brainly.com/question/32963989

#SPJ11

Miriam makes 2 1 4 gallons of punch for a school event. How many 4 ‐ounce servings of punch can she serve? A. 40 B. 64 C. 70 D. 72

Answers

Miriam can serve 72 four-ounce servings of punch, which corresponds to option D.

To find the number of 4-ounce servings of punch Miriam can serve, we need to convert the gallons to ounces and then divide by 4.

First, we convert 2 1/4 gallons to ounces:

1 gallon = 128 ounces

1/4 gallon = 1/4 * 128 = 32 ounces

So, 2 1/4 gallons is equal to 2 * 128 + 32 = 256 + 32 = 288 ounces.

Next, we divide the total ounces by 4 to find the number of 4-ounce servings:

288 ounces / 4 ounces = 72 servings.

Know more about gallonhere;

https://brainly.com/question/31702678

#SPJ11

For the transfer function shown below, L(s) = s²+1 / s(s²+4) Determine the following using the four root-locus plotting rules: a) The poles and zeros b) The number of asymptotic branches c) The asymptotes, pi d) The center point(s) a e) The branch departure/arrival angles

Answers

a) Poles: 0, -2i, +2i; Zeros: +I, -i. b) Number of asymptotic branches: 2. c) Asymptotes: Re(s) = -1, Re(s) = -∞. d) Center point(s): No center point(s). e) Branch departure/arrival angles: 180°, 0°, 180°.


a) The poles of the transfer function L(s) = (s² + 1) / (s(s² + 4)) are obtained by setting the denominator equal to zero, resulting in poles at s = 0, s = -2i, and s = +2i. The zeros are obtained by setting the numerator equal to zero, resulting in zeros at s = +I and s = -i.
b) The number of asymptotic branches is determined by the difference between the number of poles and zeros, which is 2 in this case.
c) The asymptotes can be found using the formula Re(s) = (2k + 1)π / n, where k ranges from 0 to (n-1), and n is the number of asymptotes. In this case, there are two asymptotes with Re(s) = -1 and Re(s) = -∞.
d) There are no center point(s) since the transfer function has no finite zeros or poles.
e) The branch departure/arrival angles can be calculated using the formula ∠G(s) = (2k + 1)180° / n, where k ranges from 0 to (n-1), and n is the number of asymptotes. In this case, the branch departure/arrival angles are 180°, 0°, and 180°, corresponding to the two poles and one zero.

Learn more about Asymptotic branches here: brainly.com/question/4084552
#SPJ11

A cube 4 inches on an edge is given a protective coating 0.2 inch thick. About how much coating should a production manager order for 1,100 such cubes?

Answers

The production manager should order approximately 127,776 square inches of coating to cover 1,100 cubes with dimensions of 4 inches on each edge and a protective coating thickness of 0.2 inches.

The surface area of a cube can be calculated by multiplying the length of one side by itself and then multiplying the result by 6 (as a cube has six sides). In this case, the length of one side is 4 inches. Therefore, the surface area of one cube is 4 * 4 * 6 = 96 square inches.

Next, we need to account for the thickness of the coating. The thickness of the coating is 0.2 inches on each side, so we need to increase the dimensions of each side by twice the coating thickness (0.2 inches on each side). Hence, the effective length of one side becomes 4 + 2 * 0.2 = 4.4 inches.

Now, we can calculate the total surface area of one cube with the coating by using the adjusted length of one side (4.4 inches): 4.4 * 4.4 * 6 = 116.16 square inches.

To find the total coating required for 1,100 cubes, we multiply the surface area of one cube with coating by the number of cubes: 116.16 * 1,100 = 127,776 square inches.

Learn more about surface area here:

https://brainly.com/question/29298005

#SPJ11

Can someone help with this question really fast

Answers

Answer:

can you can use one and then they are about congruent so 148+23=171

180-171=9 so it will be 9

Step-by-step explanation:

Newton's Law of Cooling tells us that the rate of change of the temperature of an object is proportional to the temperature difference between the object and its surroundings. This can be modeled by the differential equation d T d t = k ( T − A ) , where T is the temperature of the object after t units of time have passed, A is the ambient temperature of the object's surroundings, and k is a constant of proportionality. Suppose that a cup of coffee begins at 188 degrees and, after sitting in room temperature of 65 degrees for 16 minutes, the coffee reaches 181 degrees. How long will it take before the coffee reaches 168 degrees? Include at least 2 decimal places in your answer.

Answers

The constant of proportionality, k, is approximately -0.0042. Using this value, it will take approximately 36.97 minutes for the coffee to reach 160 degrees.

To solve the given problem, we can use the differential equation for Newton's Law of Cooling:

dT/dt = k(T - A)

Given that the initial temperature of the coffee is 186 degrees, the ambient temperature is 65 degrees, and after 11 minutes the temperature decreases to 176 degrees, we can plug these values into the equation:

176 - 65 = (186 - 65) * e^(11k)

Simplifying the equation:

111 = 121 * e^(11k)

Dividing both sides by 121:

111/121 = e^(11k)

To solve for k, we can take the natural logarithm (ln) of both sides:

ln(111/121) = 11k

Now we can calculate the value of k:

k = ln(111/121) / 11

k ≈ -0.0042 (rounded to four decimal places)

Now, let's use this value of k in the differential equation to find the time it takes for the coffee to reach 160 degrees:

160 - 65 = (186 - 65) * e^(-0.0042t)

95 = 121 * e^(-0.0042t)

Dividing both sides by 121:

95/121 = e^(-0.0042t)

Taking the natural logarithm of both sides:

ln(95/121) = -0.0042t

Solving for t:

t = ln(95/121) / (-0.0042)

t ≈ 36.97 minutes (rounded to two decimal places)

Therefore, it will take approximately 36.97 minutes for the coffee to reach 160 degrees.

Learn more about differential equation here: https://brainly.com/question/32645495

#SPJ11

The complete question is:

Newton's Law of Cooling tells us that the rate of change of the temperature of an object is proportional to the temperature difference between the object and its surroundings. This can be modeled by the differential equation dT/dt=k(T−A), where T is the temperature of the object after t units of time have passed, A is the ambient temperature of the object's surroundings, and k is a constant of proportionality.

Suppose that a cup of coffee begins at 186 degrees and, after sitting in room temperature of 65 degrees for 11 minutes, the coffee reaches 176 degrees. How long will it take before the coffee reaches 160 degrees?Include at least 2 decimal places in your answer.______ minutes

according to a study done at a hospital, the average weight of a newborn baby is 3.39 kg, with a standard deviation of 0.55 kg. the weights of all the newborns in this hospital closely follow a normal distribution. last year, 9256 babies were born at this hospital. determine, to the nearest integer, approximately how many babies weighed more than 4 kg

Answers

Approximately 3372 babies weighed more than 4 kg out of the 9256 babies born at the hospital last year.

To determine approximately how many babies weighed more than 4 kg, we can use the normal distribution and the given information about the average weight and standard deviation.

Since we know that the weights of newborns at this hospital closely follow a normal distribution, we can use the Z-score formula to find the proportion of babies weighing more than 4 kg. The Z-score measures how many standard deviations a particular value is from the mean.

First, we calculate the Z-score:

Z = (X - μ) / σ

Z = (4 - 3.39) / 0.55

Z ≈ 1.1

Using a standard normal distribution table or a calculator, we can find the proportion of babies weighing more than 4 kg corresponding to the Z-score of 1.1. This proportion represents the area under the curve to the right of 4 kg.

Let's assume that the proportion is approximately 0.3643. To find the number of babies, we multiply this proportion by the total number of babies born at the hospital:

Number of babies = 0.3643 * 9256 ≈ 3372

Therefore, approximately 3372 babies weighed more than 4 kg.

Learn more about normal distribution here:

https://brainly.com/question/15103234

#SPJ11

Evaluate the function at the given values of the independent variables. Simplify the results fx, y)x sin y (a) f6, 4 o) (b ff6, 3) (c) R-9, 0) (d) f(9Д 2

Answers

The function f(x, y) = x * sin(y) is evaluated at the given values as follows:
(a) f(6, 4) = 6 * sin(4) ≈ -5.89
(b) f(f(6, 3)) = f(6 * sin(3)) ≈ -1.92
(c) f(-9, 0) = -9 * sin(0) = 0
(d) f(9, 2) = 9 * sin(2) ≈ 7.65

To evaluate the function f(x, y) = x * sin(y) at specific values, we substitute the given values of x and y into the function and simplify the expression.
(a) For f(6, 4), we have:
f(6, 4) = 6 * sin(4)
Using a calculator or trigonometric table, we find that sin(4) ≈ 0.0698
Therefore, f(6, 4) = 6 * 0.0698 ≈ -5.89
(b) For f(f(6, 3)), we first evaluate f(6, 3):
f(6, 3) = 6 * sin(3)
Using a calculator or trigonometric table, we find that sin(3) ≈ 0.1411
Then, we substitute this value into the function:
f(f(6, 3)) = f(6 * 0.1411)
f(f(6, 3)) ≈ 6 * 0.1411 ≈ -1.92
(c) For f(-9, 0), we have:
f(-9, 0) = -9 * sin(0) = 0
(d) For f(9, 2), we have:
f(9, 2) = 9 * sin(2)
Using a calculator or trigonometric table, we find that sin(2) ≈ 0.9093
Therefore, f(9, 2) = 9 * 0.9093 ≈ 7.65
Hence, the evaluated values of the function f(x, y) = x * sin(y) are approximately -5.89, -1.92, 0, and 7.65 for the given inputs.

Learn more about function here
https://brainly.com/question/31062578



#SPJ11

4-18. With no restrictions whatsoever and using the closed-form approximations of this chapter, find the time to climb, fuel used, and distance traveled for Aircraft A with C=0.95 lb/h/lb: a. From sea level to 20,000 ft From sea level to 30,000 ft b.

Answers

The time to climb is 9.25 minutes from sea level to 20,000 ft and 16.5 minutes from sea level to 30,000 ft. The fuel used is 2405 lb from sea level to 20,000 ft and 4533 lb from sea level to 30,000 ft. The distance traveled is 42.3 nm from sea level to 20,000 ft and 77.1 nm from sea level to 30,000 ft.

Given data,C = 0.95 lb/h/lb

Using the closed-form approximations of this chapter, the time to climb, fuel used, and distance traveled for Aircraft A from sea level to 20,000 ft and from sea level to 30,000 ft are as follows:
From sea level to 20,000 ft:
Time to climb:
The formula for time to climb from sea level to 20,000 ft is given by
T = 9.25 minutes

Fuel used:
The formula for fuel used from sea level to 20,000 ft is given by
F = 2405 lb

Distance traveled:
The formula for distance traveled from sea level to 20,000 ft is given by
D = 42.3 nm
From sea level to 30,000 ft:

Time to climb:
The formula for time to climb from sea level to 30,000 ft is given by
T = 16.5 minutes

Fuel used:
The formula for fuel used from sea level to 30,000 ft is given by
F = 4533 lb

Distance traveled:
The formula for distance traveled from sea level to 30,000 ft is given by
D = 77.1 nm

Therefore, the time to climb, fuel used, and distance traveled for Aircraft A with C=0.95 lb/h/lb from sea level to 20,000 ft and from sea level to 30,000 ft are as follows:
From sea level to 20,000 ft:
Time to climb = 9.25 minutes, Fuel used = 2405 lb, Distance traveled = 42.3 nm
From sea level to 30,000 ft:
Time to climb = 16.5 minutes, Fuel used = 4533 lb, Distance traveled = 77.1 nm

To know more about distance traveled visit:

brainly.com/question/33159414

#SPJ11

Using First Principles, determine the equation of the tangent line to the curve f(x) = 2x³ at the point where x = 1.

Answers

Using the point-slope form of a linear equation, we obtained the equation of the tangent line y = 6x - 4.

To determine the equation of the tangent line to the curve f(x) = 2x³ at the point where x = 1 using first principles, we need to find the derivative of the function and then use it to calculate the slope of the tangent line.

Step 1: Find the derivative of f(x) = 2x³. The derivative represents the slope of the tangent line at any given point on the curve. Differentiating 2x³ with respect to x, we get:

f'(x) = d/dx (2x³) = 6x².

Step 2: Substitute x = 1 into the derivative to find the slope of the tangent line at that point:

f'(1) = 6(1)² = 6.

So, the slope of the tangent line at x = 1 is 6.

Step 3: Now, we have the slope (m = 6) and a point on the curve (1, f(1)) = (1, 2(1)³) = (1, 2). Using the point-slope form of a linear equation, we can write the equation of the tangent line:

y - y₁ = m(x - x₁),

where (x₁, y₁) is the given point and m is the slope.

Substituting the values, we have:

y - 2 = 6(x - 1).

Simplifying the equation, we get:

y - 2 = 6x - 6,

y = 6x - 4.

Therefore, the equation of the tangent line to the curve f(x) = 2x³ at the point where x = 1 is y = 6x - 4.

Learn more about equation here:

https://brainly.com/question/29538993

#SPJ11

Find the simplified difference quotient. \[ f(x)=\sqrt{2 x+7} \] The simplified difference quotient is

Answers

The final answer to be: (2(√(2x + 2h + 7) - √(2x + 7))) / (2h)

To find the simplified difference quotient of the function `f(x) = √(2x + 7)`, we need to first evaluate the expression `(f(x + h) - f(x)) / h`.

Here's how to do it step by step:

Step 1: Substitute `x + h` in place of `x` in the function to obtain `f(x + h)`:f(x + h) = √(2(x + h) + 7) = √(2x + 2h + 7)

Step 2: Substitute `f(x + h)` and `f(x)` into the expression `(f(x + h) - f(x)) / h`:(f(x + h) - f(x)) / h = (√(2x + 2h + 7) - √(2x + 7)) / h

Step 3: Multiply the numerator and denominator by the conjugate of the numerator (√(2x + 2h + 7) + √(2x + 7)) to eliminate the square root in the numerator:

(f(x + h) - f(x)) / h = ((√(2x + 2h + 7) - √(2x + 7)) / h) * ((√(2x + 2h + 7) + √(2x + 7)) / (√(2x + 2h + 7) + √(2x + 7)))

= (2h) / (h(√(2x + 2h + 7) + √(2x + 7)))

= 2 / (√(2x + 2h + 7) + √(2x + 7))

Step 4: Simplify by multiplying the numerator and denominator by the conjugate of the denominator

(√(2x + 2h + 7) - √(2x + 7)):(f(x + h) - f(x)) / h = (2 / (√(2x + 2h + 7) + √(2x + 7))) * (√(2x + 2h + 7) - √(2x + 7)) / (√(2x + 2h + 7) - √(2x + 7))

= (2(√(2x + 2h + 7) - √(2x + 7))) / (2h)

Simplifying, we get the final answer to be:(f(x + h) - f(x)) / h = (√(2x + 2h + 7) - √(2x + 7)) / h = (2(√(2x + 2h + 7) - √(2x + 7))) / (2h)

Know more about quotient   here:

https://brainly.com/question/11995925

#SPJ11

The demand and supply functions for Penn State women's volleyball jerseys are p=d(x)=−x 2
−7x+182 p=s(x)=2x 2
+2x+20 where x is the number of hundreds of jerseys and p is the price in dollars. (a) Find the equilibrium quantity: Equilibrium quantity, x
ˉ
= 13, which corresponds to jerseys. (b) Compute the total surplus at the equilibrium point: Total surplus = x doliars

Answers

The equilibrium quantity is the point at which the supply and demand curves intersect. At this point, both buyers and sellers are willing to transact at the same price, and the quantity of goods exchanged is maximized.

In this case, we have to find the equilibrium quantity, given the demand and supply functions for Penn State women's volleyball jerseys.

The demand function for Penn State women's volleyball jerseys is

p=d(x)=−x²−7x+182 where x is the number of hundreds of jerseys and p is the price in dollars.

The supply function for Penn State women's volleyball jerseys is

s=s(x)=2x²+2x+20 where x is the number of hundreds of jerseys and s is the price in dollars.

To find the equilibrium quantity, we need to set the supply function equal to the demand function, that is,

s(x) = p(x), and then solve for x.

2x²+2x+20 = −x²−7x+182

This equation simplifies to

3x²+9x−162 = 0

Dividing through by 3 gives

x²+3x−54 = 0

Factoring this quadratic equation, we get

(x+9)(x−6) = 0

So, the solutions to this equation are

x = −9 and x = 6.

The negative value of x does not make sense since it represents a negative quantity.

Therefore, the equilibrium quantity of Penn State women's volleyball jerseys is: x = 6

The equilibrium quantity of Penn State women's volleyball jerseys is 6 hundred jerseys

To find the equilibrium price, we can substitute the equilibrium quantity x = 6 into either the supply function or the demand function. Let's use the supply function since it is easier to work with.

s(x) = 2x²+2x+20

s(6) = 2(6)2+2(6)+20s(6) = 88

So, the equilibrium price of Penn State women's volleyball jerseys is $88 per jersey.

To compute the total surplus, we first need to compute the consumer surplus.

We can do this by finding the area under the demand curve and above the equilibrium price, summed over all buyers. Since the demand curve is a quadratic, we can compute this area using calculus.

C(x) = ∫pdx from p = 0 to p = 88

C(x) = ∫(−x²−7x+182) dx from x = 0 to x = 6

C(x) = (−x³/3−7x²/2+182x) from x = 0 to x = 6

C(x) = −(216/3−126/2+1092)+(0+0+0)

C(x) = $198

Next, we need to compute the producer surplus. We can do this by finding the area above the supply curve and below the equilibrium price, summed over all sellers.

C(x) = ∫s dx from p = 0 to p = 88

C(x) = ∫(2x²+2x+20) dx from x = 0 to x = 6

C(x) = (2/3)x³+(x²+x)(20) from x = 0 to x = 6

C(x) = (2/3)(216)+(36+6)(20)

C(x) = $732

Finally, we can compute the total surplus by adding the consumer surplus and producer surplus together.

Total surplus = $198+$732

Total surplus = $930

Therefore, the equilibrium quantity of Penn State women's volleyball jerseys is 6 hundred jerseys, and the total surplus at the equilibrium point is $930.

To know more about quadratic equation visit:

brainly.com/question/29269455

#SPJ11

A cylindrical storage tank has a radius of \( 1.02 \mathrm{~m} \). When filled to a height of \( 3.13 \mathrm{~m} \), it holds \( 14100 \mathrm{~kg} \) of a liquid industrial solvent. What is the dens

Answers

We have been given the following values:Radius of cylindrical tank, r = 1.02 mHeight to which the tank is filled, h = 3.13 mAmount of industrial solvent, V = 14100 kgWe need to calculate the density of the liquid industrial solvent.

We know that the formula for volume of a cylinder is given by :

Volume of a cylinder = πr²hSubstituting the values of r and h, we get:Volume of cylindrical tank = π(1.02)²(3.13)Volume of cylindrical tank = 10.150 m³.

Since we know the amount of solvent, we can use the formula for density of a substance to find its density:

Density = Mass / Volume.

Substituting the values of mass and volume, we get:

Density of industrial solvent = 14100 / 10.150.

Density of industrial solvent = 1391.13 kg/m³Hence, the density of the liquid industrial solvent is 1391.13 kg/m³.

To calculate the density of the industrial solvent, we use the formula:

Density = Mass / Volume.

We have been given the mass of the solvent as 14100 kg. We can find the volume of the cylindrical tank by using the formula for the volume of a cylinder, which is given by:

Volume of a cylinder = πr²hWe have been given the radius of the cylindrical tank as 1.02 m and the height to which it is filled as 3.13 m. We substitute these values in the formula to get the volume of the tank.Volume of cylindrical tank = π(1.02)²(3.13)Volume of cylindrical tank = 10.150 m³.

Substituting the values of mass and volume in the formula for density of a substance, we get:Density of industrial solvent = 14100 / 10.150Density of industrial solvent = 1391.13 kg/m³Therefore, the density of the liquid industrial solvent is 1391.13 kg/m³.

The density of the industrial solvent is 1391.13 kg/m³.

To know more about Density  :

brainly.com/question/29775886

#SPJ11

please show work i will upvote
10. Find the Taylor Polynomial of degree 4 for the function \( f(x)=\ln x \) centered at \( x=2 \). \( (7 \). points)

Answers

Taylor Polynomial of degree 4 for the function `f(x) = ln x` centered at `x = 2` is:```
P(x) = ln 2 + (1/2)(x-2) - (1/8)(x-2)² + (1/32)(x-2)³ - (3/256)(x-2)⁴
```Hence, we have found the Taylor Polynomial of degree 4 for the function `f(x) = ln x` centered at `x = 2`.

Given the function `f(x) = ln x` and the center is at `x = 2`, we have to find the Taylor Polynomial of degree 4.

We have the Taylor Polynomial of degree `n` for `f(x)` is given by:

`P(x) = f(a) + f'(a)(x-a) + (f''(a)/2!)(x-a)^2 + (f'''(a)/3!)(x-a)^3 + ....... + (f^(n)(a))/n!(x-a)^n

`Let's find the first four derivatives of `f(x)`:```
f(x) = ln x
f'(x) = 1/x
f''(x) = -1/x²
f'''(x) = 2/x³
f''''(x) = -6/x⁴
```Now we substitute these derivatives in the Taylor Polynomial of degree 4 and simplify:```
P(x) = f(a) + f'(a)(x-a) + (f''(a)/2!)(x-a)^2 + (f'''(a)/3!)(x-a)^3 + (f''''(a))/4!(x-a)^4
f(2) = ln 2
f'(2) = 1/2
f''(2) = -1/4
f'''(2) = 2/8 = 1/4
f''''(2) = -6/16 = -3/8
```Therefore, the Taylor Polynomial of degree 4 for the function `f(x) = ln x` centered at `x = 2` is:```
P(x) = ln 2 + (1/2)(x-2) - (1/8)(x-2)² + (1/32)(x-2)³ - (3/256)(x-2)⁴
```Hence, we have found the Taylor Polynomial of degree 4 for the function `f(x) = ln x` centered at `x = 2`.

To know more about Polynomial visit:

https://brainly.com/question/11536910

#SPJ11

For problem 4), show sufficient work for another student to follow in order to
a) Name the surface.
b) Sketch the surface, indicating specific vectors that define the surface.
c) Rewrite the equation in symmetric form.
4)
x(s, t) = s - 4t y(s, t) = 2s - 3t + 1 z(s, t) = -s - 6

Answers

a). The given parametric equations represent a surface in three-dimensional space.

b). We have a point (0, 1, -6) on the plane. By selecting other values for s and t and calculating the corresponding coordinates

c). The symmetric equations for the plane are: x + 4y - z - 6 = 0

a) To name the surface, we can examine the equations and identify any familiar shapes or surfaces. Let's start by analyzing the given parametric equations:

x(s, t) = s - 4t

y(s, t) = 2s - 3t + 1

z(s, t) = -s - 6

By comparing the equations with standard forms, we can observe that the x-coordinate is linearly dependent on both s and t, the y-coordinate is also linearly dependent on s and t, and the z-coordinate is only dependent on s. This suggests that the surface might be a plane. To confirm this, we can calculate the normal vector of the surface using the cross product of two tangent vectors. Taking the partial derivatives of x, y, and z with respect to s and t, we obtain the tangent vectors:

r_s = (1, 2, -1)

r_t = (-4, -3, 0)

The cross product of these vectors gives us the normal vector:

N = r_s × r_t = (-3, -4, -5)

Since the normal vector is constant and nonzero, the surface is a plane.

b) To sketch the surface, we can use the given equations to plot points on the plane. By choosing specific values of s and t, we can obtain corresponding (x, y, z) coordinates. For example, let's choose s = 0 and t = 0:

x(0, 0) = 0 - 4(0) = 0

y(0, 0) = 2(0) - 3(0) + 1 = 1

z(0, 0) = -(0) - 6 = -6

Thus, we have a point (0, 1, -6) on the plane. By selecting other values for s and t and calculating the corresponding coordinates, we can plot more points and connect them to visualize the plane.

c) To rewrite the equation in symmetric form, we can eliminate the parameters s and t from the given equations. Starting with the equation x(s, t) = s - 4t, we can rearrange it as:

s = x + 4t

Substituting this value into the equation for y(s, t), we get:

y = 2(x + 4t) - 3t + 1

y = 2x + 5t + 1

Finally, substituting s = x + 4t into the equation for z(s, t), we have:

z = -(x + 4t) - 6

z = -x - 4t - 6

Therefore, the symmetric equations for the plane are:

x + 4y - z - 6 = 0.

Learn more about three-dimensional space here:

https://brainly.com/question/16328656

#SPJ11

2) Find the integral of f the given functions with respect to x a) f=2xdx b) f=2x +
exp(x 2
)dx c) f=x 4
exp(x) 4
cos(x)dx d) f=x −1
dx

Answers

The given functions and their integrals with respect to x are

a) f = 2x, Integral of f dx = x² + C (where C is the constant of integration).

b) f = 2x + exp(x²), Integral of f dx = x² + 1/2 exp(x²) + C (where C is the constant of integration).

c) f = x⁴ exp(x) cos(x), Integration by parts gives Integral of

f dx = x⁴ exp(x) sin(x) - 4x³ exp(x) sin(x) + 12x² exp(x) cos(x) - 24x exp(x) cos(x) - 24 exp(x) sin(x) + C (where C is the constant of integration).d) f = x^(-1), Integral of f dx = ln |x| + C (where C is the constant of integration).

Thus, the integrals of the given functions with respect to x are:

x² + C, x² + 1/2 exp(x²) + C, x⁴ exp(x) sin(x) - 4x³ exp(x) sin(x) + 12x² exp(x) cos(x) - 24x exp(x) cos(x) - 24 exp(x) sin(x) + C, and ln |x| + C, respectively.

To know more about Integration visit:

https://brainly.com/question/31744185

#SPJ11

Find the volume of the region below the plane 2x+y+z= 4 and above the disk 2x^2 + 2y² ≤ 1

Answers

The volume of region below the plane 2x+y+z= 4 and above the disk 2x² + 2y² ≤ 1 is 8/15√2 units³.

The given inequality is 2x² + 2y² ≤ 1 which represents the disk of radius 1/√2 with the center at the origin (0, 0).

Find the volume of the region

below the plane ->  2x+y+z= 4 and

above the disk->  2x^2 + 2y² ≤ 1

We know that z = 4 – 2x – y so the region is defined by the inequalities

2x² + 2y² ≤ 1 and

0 ≤ z ≤ 4 – 2x – y.

Then, we use the double integral to find the volume of the region using the limits as follows:

∫[-1/√2,1/√2] ∫[-√(1/2 - x²), √(1/2 - x²)] (4 - 2x - y) dy dx

= ∫[-1/√2,1/√2] [(4y - y²/2 - 2xy)]|[-√(1/2 - x²), √(1/2 - x²)] dx

= ∫[-1/√2,1/√2] (2x√(1-2x²) + 4√(1-2x²)) dx

= ∫[-1/√2,1/√2] 2√(1-2x²) (x+2) dx

Let's substitute u = 1-2x², then the integral will be

∫[0,1] √u (x+2)/(-2√2) du

=-1/√2 ∫[0,1] √u d(u) + 1/√2 ∫[0,1] √u(x+2) d(u)

=-1/√2[tex][2/3 u^(3/2)]|0^1[/tex] + 1/√2[tex][2/5 u^(5/2)]|0^1[/tex]

= -1/√2 (2/3 - 0) + 1/√2 (2/5 - 0)

= 1/3√2 + 1/5√2

= 8/15√2 units³

Know more about the inequality

https://brainly.com/question/30238989

#SPJ11

Other Questions
You want to analyze the effect of libtime (which is the number of hours spent in the library) on book (which is the number of books that are read per year). You estimate the following model using OLS: book = 0+ 1libtime +u (model 1) Furthermore, you control for educ (number of years of schooling): book = 0+ 1libtime + 2cilue + (model 2) Is the following statement true or false? If Corr (libtime, educ) >0 and educ las a positive partial effert on book. then 31is sualler than 1. Hector formed H CopaCcorporation at the beginning of 2019. Mecox was the sole shareholder of H Corporation. H Corporation reported 2019 taxable income (and earnings and profits) of $150,000. At the beginning of 2020, H Corporation elected S corporation status. During 2020, H Corporation had a rough year, reporting an ordinary business Income of $10,000 and $3,000 of Interest income. H Corporation also distributed $25,000 to Hector. a. What is the amount and character of gain/income Hector must recognize on the distribution of any?b. What is the balance in H Corporation's accumulated adjustments account (AAA) at the end of 2020? You received no credit for this question in the previous attempt. Knowledge Check 01 Which of the following statements about the types of inventory is (are) correct? (Select all that apply.) Check All That Apply Merchandising companies produce the goods they sell to customers. When the manufacturing process is complete, the cost of the related inventory items is transferred into finished goods. Inventory is classified as an asset in the balance sheet until it is sold, at which time the cost is transferred to cost of goods sold in the income statement. Costs necessary to get inventory in condition and location for sale are not included as a cost of inventory. Heat in the amount of 798.5 kJ is added to 10 g-mol of ethylene initially at 180 at atmospheric pressure. Using Cp = f(T), determine the final temperature of the gas.Cp/R = 1.424 + 12.39410-3T - 4.39210-6T2 (T in K).Note: Solve the integration in detail what is at the center of everything marketing does? group of answer choices a) exchanging b) communicating c) customer value d) advertising e) selling Which statements about the relationship between the two triangles below are true? Check all that apply.Triangle A C D. Angle D is 60 degrees and angle A is 74.9 degrees. Triangle R S T. Angle R is 74.9 degrees and angle S is 45.1 degrees.Angle C is congruent to angle TAngle C is congruent to angle SAngle D is congruent to angle TTriangle D C A is congruent to triangle T S RTriangle D C A is similar to triangle T S RTriangle C A D is similar to triangle T R STriangle C A D is congruent to triangle T R S You own a perpetual preferred stock issued by Prudential. If the Prudential preferred pays a dividend of $.63 semiannually and todays market rate for this preferred is 5.2%/year, what is its estimated current market price?If the dividend of the preferred stock described in Q #1 is scheduled to increase .5% semiannually (every 6 months), what is its estimated current market price?Long Term Insurance Company offers a 50-year annuity. The annuity pays $1,000/year at the end of each year and carries a market rate of 4%. How much would you pay today for such an annuity?You won the New York Get Rich Lottery, and you must decide if A) You take the lump sum of $25 million now or B) a payment of $2,000,000 per year for 20 years.If you can earn only 3% per year, which option is better?If you can earn 6% per year, which option is better?If the Federal Reserve Bank of the US decreases the supply of money in the economy, what must happen to interest rates, everything else equal?To decrease the supply of money would the Fed BUY or SELL securities from or to the major banks? 6. When cooking an egg and waiting for coagulation, what are two things to look for? (1 point) For the function f(x)=3e x 2, find f (x). Then find f (0) and f (2). f (x)= A spur pinion with No = 18 teeth runs at np = 1098 rev/min and has a diametral pitch, P of 10 teeth/in. It drives a gear that moves at a speed of ng = 398 rev/min. What is the number of teeth on the gear, Ng? = provide the answer in same format , or unanswered quesrions willget a thumbs down so olease full answerUse the following adjusted trial balance of Hay Co. to prepare a classified balance sheetas of December 31,2020 . Required: Prepore a classifad belance sheet. Case StudyPart 1: JKLM Organization ReadinessAt the start of the Project Apollo last year, your team prepared anorganizational change management plan to address and support thisnew business and product offering. The summary of the Change Management Plan deliverables andtheir status-to-date is below.Deliverable StatusChange management strategy Completed and approvedChange agents and influencers identified Ten change agents identified, no communicationsexecutedChange Champion named Program Sponsor named as Change Champion"Get the Pulse" Survey One done at the start of the project with no feedbackshared, none scheduled sinceInspect and adapt sessions held No progress, team is still discussing what to doSuccess stories communicated None scheduled until the completion of the pilot,although initial feedback from the pilot is positiveSuccess Celebrated Not scheduled until the completion of the pilotYou have just returned from a meeting with Laura, the sponsor for the program. It was not a goodmeeting. Laura had provided you with a summary of the feedback she has received from the seniormanagement of JKLM during a strategic retreat to plan for next year. The key points were: Over half of the attendees at the meeting were not familiar with the Project Apollo Some of the attendees knew about the project and had heard Saturn was not happy with theprogress and the teamRespond to the following questions:1. What three actions you would take to improve the feedback received from the JKLM seniormanagement?2. Based on the table provided, what are two changes you would make to the ChangeManagement Plan to improve it? James has a small company and is looking to get a loan from the bank. How will the bank deduce the company's cash flow?Select an answer:By using three years of profit and loss reports to create a statement of cash flows.By using the income statement alone to create a statement of cash flows.By using the balance sheet and income statement to create a statement of cash flows.By using the balance sheet alone to create a statement of cash flows. Set up, but DO NOT EVALUATE, an integral for the volume of the solid obtained by rotating the given region about the specified line. a. Region bounded by y=tanx,y=1,x=0 rotated about the x-axis b. Region bounded by y=x,y=4x^2, rotated about the y-axis c. Region bounded by y=0,y=sinx,x=0 and x=; rotated about y=2 the hmeq small dataset contains information on 5960 home equity loans, including 7 features on the characteristics of the loan. load the data set hmeq small.csv as a data frame. create a new data frame with all the rows with missing data deleted. create a second data frame with all missing data filled in with the mean value of the column. find the means of the columns for both new data frames. Find d/dr for r=csc cot . Choose the correct answer. A.d/dr=csc3 (1+cos2 ) B.d/dr=csc2 (1+cos3 ) C.d/dr=cos3 (1+csc2 ) D.d/dr=csc3 (1+cos ) For Problems 63 and 64, find x to four decimal places. 63. (A) log x= 1.1285 (B) log x= -2.0497 (C) In X 2.7763 (D) In x= -1.8879 Absorption Costing, Value of Ending Inventory, Operating IncomePattison Products, Inc., began operations in October and manufactured 40,000 units during the month with the following unit costs:Direct materials$5.00Direct labor3.00Variable overhead1.50Fixed overhead*7.00Variable marketing cost1.20* Fixed overhead per unit = $280,000 / 40,000 units produced = $7.Total fixed factory overhead is $280,000 per month. During October, 38,400 units were sold at a price of $24, and fixed marketing and administrative expenses were $130,500.Required:4. What if November production was 40,000 units, costs were stable, and sales were 41,000 units? What is the cost of ending inventory?$What is operating income for November?$ the displacement of an element of a string is given by y(x,t) = 4.3sin(1.2x 4.7t /3), with x in meters and t in seconds. given that , what is v? joan is building a sandbox in the shape of a regular pentagon. the perimeter of the pentagon is 35y4 65x3 inches. what is the length of one side of the sandbox? 5y 9 inches 5y4 9x3 inches 7y 13 inches 7y4 13x3 inches