What focal length should a pair of contact lenses have if they are to correct the vision of a person with a near point of 56 cm?

Answers

Answer 1

The focal length of a pair of contact lenses required to correct a person's vision with a near point of 56 cm is 1.79 diopters.

The focal length of a pair of contact lenses to correct the vision of a person with a near point of 56 cm is 1.79 diopters. The formula used to find the focal length of contact lenses to correct near point defects is: Image distance = f * object distance / (f + object distance)where image distance is the distance of the image from the lens, object distance is the distance of the object from the lens, and f is the focal length of the lens.

The person's near point is 56 cm. This means that the person's far point is at infinity, and they are unable to see objects that are farther away than infinity.To determine the focal length of the lens required to correct this vision defect, we can use the formula:1 / focal length = 1 / object distance + 1 / image distance

Since the person's far point is at infinity, their image distance is equal to the focal length of the corrective lens. Therefore, we can rewrite the formula as:1 / focal length = 1 / object distance + 1 / focal lengthSolving for the focal length, we get:focal length = 1 / ((1 / object distance) + (1 / image distance))focal length = 1 / ((1 / 56 cm) + (1 / ∞))focal length = 1.79 diopters

Therefore, the focal length of a pair of contact lenses required to correct a person's vision with a near point of 56 cm is 1.79 diopters.

To learn more about focal visit;

brainly.com/question/13278945

#SPJ11


Related Questions

21.42 using cyclopentanone as your starting material and using any other reagents of your choice, propose an efficient synthesis for each of the following compounds

Answers

Cyclopentanone, C5H8O is a cyclic ketone and can be converted to various organic compounds with the help of different reagents. Thus, cyclopentanone can be used as a starting material to synthesize different organic compounds using various reagents and catalysts.

Here, efficient syntheses for three organic compounds using cyclopentanone as a starting material are given below:

1) 2-Methylcyclopentanone: It can be prepared by the reaction of cyclopentanone with isopropyl, magnesium bromide, followed by hydrolysis of the resulting product. This reaction is shown below:

2) Cyclopentylmethanol: It can be prepared by the reduction of cyclopentanone with sodium borohydride (NaBH4) in methanol. This reaction is shown below:

3) 2-Cyclopenten-1-one: It can be prepared by the dehydration of cyclopentanol, which can be prepared by the reduction of cyclopentanone with lithium aluminum hydride (LiAlH4). The dehydration of cyclopentanol can be carried out by the elimination of water molecule using an acid catalyst like H2SO4. The overall reaction is shown below.

to know more about cyclopentanone visit:

https://brainly.com/question/14919939

#SPJ11

Work by Non-Ideal Gas 123 Compressed gases aren't ideal. Let's consider a gas that's non-ideal only because the volume available to each of the N molecules is reduced because each other molecule occupies volume v. Instead of PV=NKT, we get: P(V-NB)=NKT. Let b=1.2 x 10-28 m3. Let's look at 3moles of this gas at T=300K starting in 0.001 m3 volume. 1) What's the initial value of the pressure? Pinitial= Pa Submit + 2) The gas expands isothermally to 0.002 m3. What's the final pressure? Pfinal= Pa Submit + 3) How much work did the gas do in this isothermal expansion? W= 6065 Submit Help Your submiss 6065 X Computed value: 6065 Feedback: Submitted: Monday, November 9 at 6:56 AM Copriabit 2020Donartment of Dhuicenivorcitu indicat Urbanachama

Answers

Thus, W = nRT ln(V2 / V1) = 3 * 8.31 * 300 * ln(0.002 / 0.001) ≈ 6065 J . Therefore, the work done by the gas in this isothermal expansion is W ≈ 6065 J.

1) Initial value of the pressure:We know that the pressure of a gas is related to the temperature and volume of the gas by the equation P(V - Nb) = nRT. Here, V is the volume of the gas, n is the number of moles of gas, R is the gas constant, T is the temperature of the gas and b is the excluded volume of the gas.

Here, the excluded volume of the gas is given to be b = 1.2 x 10^(-28) m^3. Therefore, we can use this equation to find the initial pressure of the gas. Given that the gas consists of 3 moles, the initial volume is 0.001 m^3 and the temperature is 300K. Thus, the initial pressure is given by: P(V - Nb) = nRT => P = nRT / (V - Nb) = (3 * 8.31 * 300) / (0.001 - (3 * 1.2 * 10^(-28))) ≈ 8.96 * 10^8 Pa . Hence, the initial value of the pressure is P initial ≈ 8.96 * 10^8 Pa.2)  Final value of the pressure: The gas expands isothermally to 0.002 m^3.

Therefore, the final volume of the gas is V = 0.002 m^3. The temperature of the gas is kept constant at 300K. Therefore, we can use the same equation P(V - Nb) = nRT to find the final pressure of the gas. Thus, P(V - Nb) = nRT => P final = nRT / (V - Nb) = (3 * 8.31 * 300) / (0.002 - (3 * 1.2 * 10^(-28))) ≈ 4.48 * 10^8 Pa Therefore, the final value of the pressure is P final ≈ 4.48 * 10^8 Pa.3)

Work done by the gas in this isothermal expansion: Since the process is isothermal, the temperature of the gas remains constant throughout the process. Therefore, we can use the equation for the work done by a gas in an isothermal process, which is given by: W = nRT ln(V2 / V1)Here, V1 is the initial volume and V2 is the final volume.

We know that the gas consists of 3 moles and the temperature is 300K. Therefore, we can find the work done by the gas using this equation. Thus, W = nRT ln(V2 / V1) = 3 * 8.31 * 300 * ln(0.002 / 0.001) ≈ 6065 J . Therefore, the work done by the gas in this isothermal expansion is W ≈ 6065 J.

To know more about Isothermal  visit :

https://brainly.com/question/30579741

#SPJ11

what is the earliest time after t = 0 s at which there is a crest at the position x = 3.6 cm ?

Answers

To determine the earliest time after t = 0 s at which there is a crest at the position x = 3.6 cm, we need to consider the wave equation for a crest.

The wave equation for a crest is given by:
x = A * cos(2πf(t - T/4))
Where:
x is the position of the wave
A is the amplitude of the wave
f is the frequency of the wave
t is the time
T is the period of the wave
In this case, we are given x = 3.6 cm, and we need to find the earliest time when this position occurs.
To find the earliest time, we can rewrite the wave equation as:
cos(2πf(t - T/4)) = x/A
Taking the inverse cosine of both sides:
2πf(t - T/4) = arccos(x/A)
Simplifying:
t - T/4 = arccos(x/A) / (2πf)
Now, we can solve for t by rearranging the equation:
t = (arccos(x/A) / (2πf)) + T/4
Since we are interested in the earliest time after t = 0 s, we need to find the smallest positive value of t that satisfies the equation.
Plug in the given values:
x = 3.6 cm
A (amplitude) - not given
f (frequency) - not given
T (period) - not given
Without knowing the values for A, f, and T, we cannot calculate the earliest time. We would need additional information about the wave or the specific conditions to determine the values of these variables and calculate the earliest time for a crest at x = 3.6 cm.

To know more about , wave equation , click here https://brainly.com/question/4692600

#SPJ11

A fast-food restaurant uses a conveyor belt to send the burgers through a grilling machine. If the grilling machine is 1.5 m long and the burgers require 2.6 min to cook, how fast must the conveyor belt travel?

Express in m/min

If the burgers are spaced 17 cm apart, what is the rate of burger production in burgers/min?

Answers

The speed of the conveyor belt is 0.01L N m/min. It depends on the length of a burger and the number of burgers produced in 2.6 minutes.

The problem relates to the application of speed-distance-time formula. Given,Length of the grilling machine, l = 1.5 mTime required to cook a burger, t = 2.6 minWe need to find the speed of the conveyor belt, v = ?We know that,Distance = Speed x TimeAlso,Distance to be travelled by a burger = length of the grilling machine = 1.5 m

As there are multiple burgers on the conveyor belt at the same time, the distance between two consecutive burgers is the sum of the length of the burger and the spacing between two burgers = 17 cm + length of a burger = 0.17 + L metresTherefore, the speed of the conveyor belt is:Speed = Total distance travelled by all the burgers/Time taken= Number of burgers x Distance between two consecutive burgers / Time takenLet the speed of the conveyor belt be v, and the length of a burger be L.

To know more about speed  visit:-

https://brainly.com/question/17661499

#SPJ11

How much work must be done to stop a 1200 kg car traveling at 95 km/h? Express your answer using two significant figures. 17 ΑΣΦ ?

Answers

The amount of work required to stop the car is 865,152 J. This work can be done by applying a force over a certain distance, such as by using the brakes or by colliding with another object that can absorb the car's kinetic energy.

To stop a 1200 kg car traveling at 95 km/h, it is necessary to perform work that converts the car's kinetic energy into other forms of energy.

Kinetic energy is the energy that an object possesses as a result of its motion, and is calculated as 1/2 mv^2, where m is the mass of the object and v is its velocity.

To stop the car completely, all of its kinetic energy must be converted into other forms of energy, such as heat, sound, or work done against frictional forces.

The amount of work required to do this is equal to the car's initial kinetic energy, which can be calculated as (1/2)mv^2.In this case, the mass of the car is 1200 kg and its velocity is 95 km/h.

To calculate its kinetic energy, we must first convert the velocity from km/h to m/s:95 km/h = (95/3.6) m/s = 26.4 m/sThen, the kinetic energy of the car can be calculated as:(1/2)(1200 kg)(26.4 m/s)^2= 865,152 J

The actual amount of work required may be greater than this, depending on factors such as the efficiency of the braking system and the amount of frictional forces involved.

To know more about work refer here:

https://brainly.com/question/19382352#

#SPJ11

how much work (in joules) is done in moving a charge of 2.5 μc a distance of 33 cm along an equipotential at 12 v? do not include units with your answer.

Answers

the work done in moving a charge of 2.5 μC a distance of 33 cm along an equipotential at 12 V is 30 μJ (microjoules).

The work done (W) in moving a charge along an equipotential can be calculated using the formula: W = q * ΔV

Where:

W is the work done,

q is the charge, and

ΔV is the change in potential.

Given:q = 2.5 μC (convert to coulombs: 2.5 μC * 10^(-6) C/μC = 2.5 * 10^(-6) C)

ΔV = 12 V

(Note: Joules = Coulombs * Volts)
Substituting the values into the formula: W = (2.5 * 10^(-6) C) * (12 V)

Calculating the result:  W = 30 * 10^(-6) J.
Therefore, the work done in moving a charge of 2.5 μC a distance of 33 cm along an equipotential at 12 V is 30 μJ (microjoules).

To learn more about work done:

https://brainly.com/question/3902440

#SPJ11

According to solubility rules, which compound should dissolve in water? Select one: ОКРО, 0 MgCO3 O Caso O AgBI

Answers

MgCO₃ is the only compound that should dissolve in water according to the given solubility rules. Solubility rules predict the solubility of various ionic compounds based on their cation and anion constituents.

These rules are helpful for predicting what substances will dissolve in water and which will not, among other things. According to solubility rules, MgCO₃ should dissolve in water. MgCO₃ is a salt that contains Mg²⁺ cation and CO₃²⁻ anion. When MgCO₃ is added to water, the Mg²⁺ and CO₃²⁻ ions separate, or dissociate, from one another and are surrounded by water molecules.

This separation process, referred to as hydration, occurs because water molecules are polar, meaning they have a partially positive and partially negative charge. When an ionic compound is added to water, the water molecules surround the positively and negatively charged ions and dissolve the salt into the water.

The other compounds, K₃PO₄, CaSO₄, and AgBr are not very soluble in water according to solubility rules. Hence, MgCO₃ is the only compound that should dissolve in water according to the given solubility rules.

Learn more about solubility rules here:

https://brainly.com/question/31327080

#SPJ11

QUESTION 6: ELECTRICITY 1 Explain what is meant when a substance is referred to as a bad conductor of electricity and give ONE example. 2 THREE equal resistors are connected in parallel. The total res

Answers

When a substance is referred to as a bad conductor of electricity, it means that it does not allow electric current to flow easily through it. This is because the substance has high resistance to the flow of electric charge.

In bad conductors, the electrons are tightly bound to their atoms or molecules, making it difficult for them to move freely and carry the electric current. As a result, only a small amount of current can pass through the substance.

Example: One example of a bad conductor of electricity is rubber. Rubber has high resistance to the flow of electric charge and is commonly used as an insulating material to prevent the flow of current in electrical wires and cables.

2. When three equal resistors are connected in parallel, the total resistance (R_total) of the combination can be calculated using the formula:

1/R_total = 1/R_1 + 1/R_2 + 1/R_3

Where R_1, R_2, and R_3 are the resistances of the individual resistors.

Since the three resistors are equal, the formula simplifies to:

1/R_total = 1/R + 1/R + 1/R = 3/R

We can invert both sides of the equation for value of R_total :

R_total = R/3

To learn more about electric current refer here:

https://brainly.com/question/29766827#

#SPJ11

what effect does an energy change have on the identity of a substance

Answers

An energy change can have different effects on the identity of a substance depending on the type of energy involved and the nature of the substance itself. In general, an energy change does not alter the fundamental identity or chemical composition of a substance. The identity of a substance is determined by its unique arrangement of atoms and the types of chemical bonds present.

When considering changes in energy, it is important to distinguish between physical and chemical changes. In a physical change, the substance undergoes a transformation that does not alter its chemical composition. For example, heating water to its boiling point causes a physical change from liquid to gas, but the water molecules remain intact. In this case, the energy change (heat) affects the physical state of the substance but not its identity.

On the other hand, in a chemical change, the substance undergoes a transformation that involves the breaking and forming of chemical bonds, resulting in a different chemical composition. Energy changes, such as heat or light, can drive chemical reactions by providing the necessary activation energy. However, even in a chemical change, the identity of the substance is determined by the arrangement of its atoms and the types of elements involved.

In summary, an energy change, whether in the form of heat, light, or other forms, can affect the physical or chemical properties of a substance, but it does not alter its fundamental identity. The identity of a substance is determined by its unique composition and arrangement of atoms, which remain unchanged during most energy changes.

For more such information on: energy

https://brainly.com/question/13881533

#SPJ8

Find the y-component of this vector: 42. 2 degrees 101m remember angles are measured from the +x axis

Answers

The y-component of the vector with 42.2 degrees 101m is 68.2 m. The y-component of the vector can be found using the formula: y = m sin θ.

To find the y-component of the vector with 42.2 degrees 101m, you need to apply trigonometry concepts. The y-component of the vector can be found using the formula: y = m sin θ, where y is the y-component of the vector, m is the magnitude of the vector, and θ is the angle between the vector and the +x axis.

To apply this formula, first, identify the given angle and the magnitude of the vector. The angle is given as 42.2 degrees, and the magnitude of the vector is given as 101m.

Now, plug in these values into the formula and solve for the y-component:

y = m sin θy

= 101m sin 42.2°y

= 68.2 m (rounded to one decimal place)

Therefore, the y-component of the vector with 42.2 degrees 101m is 68.2 m

To know more about vector, refer

https://brainly.com/question/27854247

#SPJ11

measure the coupling constant between he and hf. explain how this can help determine the stereochemistry (i.e. cis vs. trans) of the double bond.

Answers

When measuring the coupling constant between he and hf, it can help determine the stereochemistry of the double bond. The coupling constant is the distance between the two peaks in the NMR spectrum. The value of the coupling constant depends on the distance between the two nuclei and the angle between the two bonds connecting the nuclei.

In a cis double bond, the hydrogens (H) are on the same side of the molecule, while in a trans double bond, the hydrogens (H) are on opposite sides of the molecule. When he and hf are in cis double bond, their coupling constant will be larger because the angle between the two bonds connecting the nuclei will be small.In contrast, when he and hf are in a trans double bond, their coupling constant will be smaller because the angle between the two bonds connecting the nuclei will be larger.

The stereochemistry of the double bond can, therefore, be determined based on the value of the coupling constant. In general, if the coupling constant is greater than 10 Hz, it indicates a cis double bond, while if the coupling constant is less than 10 Hz, it indicates a trans double bond.

To know more about stereochemistry visit:

https://brainly.com/question/13266152

#SPJ11

uppose a horse leans against a wall as shown in the figure. The total mass of the horse and rider is t7y kg. Calculate the force, in newtons, exerted on the wall, assuming that force is horizontal and using the data in the schematic representation of the situation. Numeric : A numeric value is expected and not an expression. F
wall

= (a)

Answers

The force exerted on the wall is 68.6y N. Let us first discuss the concept related to the leaning of a horse against the wall. When a horse leans against a wall, the wall applies an equal and opposite force on the horse according to Newton's Third Law of Motion.

The force exerted by the horse on the wall is equal to the force exerted by the wall on the horse. This force is horizontal because the horse is leaning against the wall. The horse's force on the wall is equal in magnitude to the normal force provided by the wall on the horse.

The given diagram is shown below:

Given that, the total mass of the horse and rider is 7y kg.

To calculate the force, we need to use Newton's second law of motion that states the force is proportional to the rate of change of momentum. Mathematically, this can be written as:

F = ma

Here,

F = Force exerted on the wall

m = mass

a = acceleration

The acceleration is zero because the horse is stationary. So the force exerted by the horse on the wall is:

F = ma = 0

This means that the force exerted on the wall is zero because the horse is not pushing the wall.

Now, let's move towards the calculation of the normal force.

N = mg

where

N = normal force exerted by the wall on the horse

m = mass

g = acceleration due to gravity

We know that the total mass of the horse and rider is 7y kg.

So, the mass of the horse and rider, m = 7y kg

The acceleration due to gravity is 9.8 m/s²N = mg = 7y × 9.8 = 68.6y N

This is the normal force exerted by the wall on the horse.

Now, as we discussed above, the force exerted by the horse on the wall is equal in magnitude to the normal force provided by the wall on the horse.

So, the force exerted on the wall,

F = 68.6y N

Learn more about Newton's Third Law of Motion: https://brainly.com/question/29768600

#SPJ11

Question 3 If the albedo of a planet is 0.2, and the incoming solar radiation is 301 Wm², how much radiation is absorbed by the planet? Round to the nearest whole number (e.g., no decimals) and input

Answers

The amount of radiation absorbed by the planet, given an albedo of 0.2 and incoming solar radiation of 301 Wm², is approximately 240 Wm².

What is the amount of radiation absorbed by a planet with an albedo of 0.2 and an incoming solar radiation of 301 Wm²?

When solar radiation reaches a planet, a portion of it is reflected back into space, which is determined by the planet's albedo. In this case, the albedo is given as 0.2, meaning that 20% of the incoming radiation is reflected.

To calculate the amount of radiation absorbed, we subtract the reflected radiation from the total incoming radiation.

In this scenario, the incoming solar radiation is 301 Wm². Since the albedo is 0.2, 20% of the radiation is reflected, which is 0.2 * 301 = 60.2 Wm².

To find the absorbed radiation, we subtract the reflected radiation from the total incoming radiation: 301 - 60.2 = 240.8 Wm².

Rounding to the nearest whole number, we get 240 Wm² as the amount of radiation absorbed by the planet.

Learn more about amount of radiation

brainly.com/question/31590119

#SPJ11

A piano is tuned by tightening or loosening the piano wires. When the wires are tightened, how is frequency of the waves on the wire affected, if at all? a. The frequency is increased. b. The frequenc

Answers

When the piano wires are tightened, the frequency of the waves on the wire is increased. leading to a higher pitch of the sound produced by the piano.

The tension in the piano wires determines the frequency at which the wires vibrate and produce sound. When the wires are tightened, the tension increases, resulting in a higher frequency of vibration and thus a higher pitch of the produced sound. This is because the frequency of a vibrating wire is inversely proportional to its length and directly proportional to the square root of the tension, as given by the equation f = (1/2L) * sqrt(T/m), where f is the frequency, L is the length, T is the tension, and m is the mass per unit length of the wire.

Tightening the piano wires increases the frequency of the waves on the wire, leading to a higher pitch of the sound produced by the piano.

To know more about frequency, visit:

https://brainly.com/question/254161

#SPJ11

A small comet orbits a heavy star. For each of the following statements, state whether it is true or false. a) The trajectory of the comet is an ellipse with one of the focal points placed very close to the position of the star. b) The amount of time for the comet to go around the star is directly proportional to the cube of the length semi-major axis of the orbit. c) The angular momentum of the comet about the star is constant. d) The linear momentum of the comet is constant. True. This system does not affect by external force

Answers

a) The trajectory of the comet an ellipse with one of the focal points placed very close to the position of the star: True

b) The amount of time for the comet to go around the star directly proportional to the cube of the length of the semi-major axis of the orbit: False

c) The angular momentum of the comet about the star constant: True

d) The linear momentum of the comet constant: False

a) True. The trajectory of the comet is indeed an ellipse with one of the focal points placed very close to the position of the star. This is one of the fundamental properties of an elliptical orbit.

b) False. The amount of time for the comet to go around the star is not directly proportional to the cube of the semi-major axis of the orbit.

Instead, it is directly proportional to the 3/2 power of the semi-major axis. This relationship is described by Kepler's third law of planetary motion.

c) True. The angular momentum of the comet about the star is constant. According to the law of conservation of angular momentum, in the absence of external torques, the angular momentum of a system remains constant.

Since there are no external torques acting on the comet-star system, its angular momentum remains constant.

d) False. The linear momentum of the comet is not constant. In an elliptical orbit, the speed of the comet changes as it moves closer to or farther away from the star.

Therefore, the linear momentum, which is the product of mass and velocity, is not constant.

To know more about "Angular momentum" refer here:

https://brainly.com/question/17272991#

#SPJ11

Question, help with question really appreciated, please only if
you know how to do it, Do part a
A mole of O₂ is compressed from a volume of 21.8 L at 5 °C and 1.75 atm to 15.8 L at the same temperature. Part A Calculate the work done by external forces to compress the gas. = ΑΣΦ ? W = Requ

Answers

The work done by external forces to compress the mole of O₂ gas from 21.8 L to 15.8 L at 5 °C and 1.75 atm is approximately 3.9642 atm*L.

To calculate the work done by external forces to compress the gas, we can use the formula:

Work = -PΔV

Where:

P is the pressure

ΔV is the change in volume

First, we need to calculate the initial and final pressures. The initial pressure is given as 1.75 atm, and it remains constant throughout the process since the temperature is kept constant. So, the initial pressure (P1) is 1.75 atm.

To find the final pressure (P2), we can use the ideal gas law equation:

PV = nRT

Where:

P is the pressure

V is the volume

n is the number of moles

R is the ideal gas constant

T is the temperature

P1 = 1.75 atm

V1 = 21.8 L

V2 = 15.8 L

T = 5 °C = 278 K

Rearranging the ideal gas law equation to solve for P2, we have:

P2 = (P1 * V1) / V2

P2 = (1.75 atm * 21.8 L) / 15.8 L

P2 ≈ 2.4107 atm

Now, we can calculate the change in volume:

ΔV = V2 - V1

ΔV = 15.8 L - 21.8 L

ΔV = -6 L

Plugging these values into the work formula:

Work = -(P2 - P1) * ΔV

Work = -(2.4107 atm - 1.75 atm) * -6 L

Work ≈ 3.9642 atm*L

Therefore, the work done by external forces to compress the gas is approximately 3.9642 atm*L.

To know more about work done refer here:

https://brainly.com/question/32281584#

#SPJ11

what is true when an object is moved closer to a plane mirror?

Answers

When an object is moved closer to a plane mirror, its image appears larger but is still the same distance behind the mirror.

A plane mirror produces a virtual image, meaning that the light rays from the object don't actually come together at the location where the image appears to be. When an object is moved closer to a plane mirror, the image appears larger because the angle of incidence and the angle of reflection increase, creating a larger virtual image.

However, the image is still the same distance behind the mirror as it was when the object was farther away, because the distance between the object and the image is twice the distance between the object and the mirror. This is known as the law of reflection and is true for all objects placed in front of a plane mirror, regardless of their distance from the mirror.

Learn more about plane mirror here:

https://brainly.com/question/1160148

#SPJ11

estimate the overall resistance of a heating element which is 220 cm long and consists of nichrome wire with a diameter of 0.56 mm. the resistivity of nichrome is 110x10-8 ω•m.

Answers

The estimated overall resistance of the heating element is approximately 0.99 Ω. We can use the formula for the resistance of a wire.

To estimate the overall resistance of the heating element, we can use the formula for the resistance of a wire:

R = (ρ * L) / A

where R is the resistance, ρ is the resistivity of the material, L is the length of the wire, and A is the cross-sectional area of the wire.

Given:

Length of the wire (L) = 220 cm = 2.20 m

Diameter of the wire (d) = 0.56 mm = 0.056 cm = 0.00056 m

Resistivity of nichrome (ρ) = 110 × 10^(-8) Ω·m

First, we need to calculate the cross-sectional area (A) of the wire using the diameter:

A = π * (d/2)^2

Substituting the values:

A = π * (0.00056/2)^2

= π * (0.00028)^2

= π * 7.84 × 10^(-8) m^2

≈ 2.461 × 10^(-7) m^2

Now, we can calculate the resistance (R):

R = (ρ * L) / A

= (110 × 10^(-8) Ω·m * 2.20 m) / 2.461 × 10^(-7) m^2

= 0.99 Ω

Therefore, the estimated overall resistance of the heating element is approximately 0.99 Ω.

To learn more about resistance click here

https://brainly.com/question/17010736

#SPJ11

Question 4 Homework. Unanswered Dipole Potential Energy -- What is the minimum potential energy (in Joules) of a q=1.00E-9C dipole with dipole separation of s=1.00E-3m placed in an external electric f

Answers

U = Q1 Q2 R. U = 1.00 * 9 * 3m = 27 Joule. Potential energy is the power that a thing possesses as a result of where it is in relation to other objects.

Thus, Potential energy is the power that a thing possesses as a result of where it is in relation to other objects. Because the earth can pull you down through the force of gravity while doing work in the process, being at the top of a stairwell gives you more potential energy than standing at the bottom.

Two magnets have more potential energy when they are held apart than when they are near to one another. They will migrate near each other and begin working.

The force acting on the two objects affects the potential energy formula. P.E. = mgh, where m is the mass in kilograms and g is the acceleration due to gravity, is the formula for gravitational force.

In the given question, U is U = Q1 Q2 R. U = 1.00 * 9 * 3m

= 27 Joule.

Potential energy is the power that a thing possesses as a result of where it is in relation to other objects.

Learn more about potential energy, refer to the link:

https://brainly.com/question/24284560

#SPJ4

when these two metals are placed in contact with one another, which of the following will take place?

Answers

When two metals are placed in contact with one another, a galvanic cell is formed. The type of reaction that takes place depends on the metal and the conditions under which they are in contact. The more reactive metal will undergo oxidation while the less reactive metal will undergo reduction.

When two metals are placed in contact with one another, a galvanic cell is formed. The type of reaction that takes place depends on the metal and the conditions under which they are in contact. The more reactive metal will undergo oxidation while the less reactive metal will undergo reduction.The reaction between two metals creates a voltage potential between them. If the potential is high enough, it can cause an electrochemical reaction to take place between the two metals. The flow of electrons through the wire can be harnessed to do work such as powering an electrical device. This phenomenon is the basis for batteries and electrochemical cells.

To conclude, when two metals are placed in contact with one another, a galvanic cell is formed. The type of reaction that takes place depends on the metal and the conditions under which they are in contact. The more reactive metal will undergo oxidation while the less reactive metal will undergo reduction.

To know more about galvanic cell visit:

brainly.com/question/29784730

#SPJ11

A jewelry designer plans to make some special-ordered silver charms for a commemorative bracelet. If the melting point of silver is 960.8 degrees Celsius, how much heat must the jeweler add to 0.500kg

Answers

The amount of heat the jeweler must add to 0.500 kg of silver depends on the initial temperature (T) of the silver.

To calculate the amount of heat the jeweler must add to 0.500 kg of silver in order to raise its temperature to the melting point, we need to use the formula:

Q = mcΔT,

where Q is the heat energy, m is the mass of the substance, c is the specific heat capacity, and ΔT is the change in temperature.

Mass of silver (m): 0.500 kg

Specific heat capacity of silver (c): 0.235 J/g°C (converted to J/kg°C)

Change in temperature (ΔT): The difference between the current temperature of the silver and its melting point.

To raise the temperature of the silver from its current temperature to its melting point, we need to calculate the temperature difference. Let's assume the current temperature is T°C.

ΔT = 960.8°C - T°C

Now we can substitute the values into the formula:

Q = (0.500 kg) * (0.235 J/kg°C) * (960.8°C - T°C)

Therefore, the amount of heat the jeweler must add to 0.500 kg of silver depends on the initial temperature (T) of the silver.

To know more about heat visit:

https://brainly.com/question/27991746

#SPJ11

how do leeuwenhoek’s observations compare to the skin cells and cheek cells you saw in class?

Answers

Antonie van Leeuwenhoek was the first to see single-celled organisms. Leeuwenhoek's observations of microorganisms and the development of his own simple microscope, which he used to observe and examine microbial life forms, are significant in the history of microscopy.

His work showed that the microscope was a valuable tool for scientific discovery. Leeuwenhoek's work also established the importance of microorganisms in life processes.A cheek cell is a type of cell that can be seen in human mouths. They appear to be rectangular in shape and have a nucleus in the center. A skin cell is a kind of cell that makes up human skin. It is a type of epithelial cell that is flat and has a nucleus in the center.Both cheek cells and skin cells, on the other hand, are two types of cells that can be seen with a light microscope. Cheek cells and skin cells are much bigger than bacteria, but they are much smaller than the objects Leeuwenhoek saw with his microscope. Leeuwenhoek's discoveries led to the realization that life existed on a small scale, revealing the complexity of even the tiniest forms of life on the planet.

To know more about microorganisms visit :

brainly.com/question/9004624

#SPJ11

Two parallel, thin, L x L conducting plates are separated by a distance d, as shown. Let L = 2.5 m, and d=2.0 mm. A charge of +4.5 μC is placed on one plate, and a charge of -4.5 μC is placed on the other plate heespertta.com-tracking id 7M79 DS-68-41-BAAS-32165 In accordance with Expert TA's Terms of Service copying this information to solations sharing wabute is strictly forbidden Deing to may result in fimination of your Expert TA Account 50% Part (a) What is the magnitude of charge density on the inside surface of each plate, in coulombs per square meter? A50% Part (b) What is the magnitude of the electric field between the plates?

Answers

(a) The magnitude of the charge density on the inside surface of each plate is 1.8 x 10⁴ C/m².

(b) The magnitude of the electric field between the plates is 9 x 10⁶ N/C.

(a) the magnitude of the charge density on the inside surface of each plate, we need to divide the total charge on each plate by the area of that plate. The charge density is given by ρ = Q/A, where ρ is the charge density, Q is the charge, and A is the area. Since the plates are parallel and thin, we can consider them as squares with side length L. Therefore, the area of each plate is A = L².

For each plate, the charge Q is ±4.5 μC. Converting it to coulombs, we have Q = ±4.5 x 10⁻⁶ C. Dividing this by the area, we get ρ = (±4.5 x 10⁻⁶ C) / (2.5 m)².

we find the magnitude of the charge density on the inside surface of each plate to be 1.8 x 10⁴ C/m².

(b) The electric field between the plates can be calculated using the formula E = σ/ε₀, where E is the electric field, σ is the charge density, and ε₀ is the vacuum permittivity. From part (a), we know the charge density is 1.8 x 10⁴ C/m².

The vacuum permittivity ε₀ is approximately 8.85 x 10⁻¹² C²/(N·m²). Plugging in the values, we get E = (1.8 x 10⁴ C/m²) / (8.85 x 10⁻¹² C²/(N·m²)).

we find the magnitude of the electric field between the plates to be approximately 9 x 10⁶ N/C.

To know more about magnitude refer here:

https://brainly.com/question/31022175#

#SPJ11

for rayleigh winds with an average wind speed of 8m/s: a. how many hours per year do the winds blow at less than 13 m/s?

Answers

The winds blow at less than 13 m/s for approximately 8531.3 hours per year.

For Rayleigh winds with an average wind speed of 8m/s: How many hours per year do the winds blow at less than 13 m/s?The Rayleigh wind speed distribution is described by the equation: f(v) = (v/vm²) * e^(-v²/2vm²), where vm is the most probable velocity (or the maximum of the distribution curve).

1. The probability that a wind speed is less than v is given by: P(v) = ∫ f(v') dv' from 0 to v

For this problem, the average wind speed is 8 m/s. Thus, vm = 1.2 * 8 = 9.6 m/s. The probability that a wind speed is less than 13 m/s can be computed as follows:P(13 m/s) = ∫ f(v') dv' from 0 to 13 = (1/vm²) * ∫ v' * e^(-v²/2vm²) dv' from 0 to 13= 1/9.6² * (-e^(-169/184)) + 13/9.6 * √(2/π) * Erf(13/√(2 * 9.6²))= 0.9743 ≈ 97.43%

Therefore, winds blow at less than 13 m/s for P(13m/s) = 97.43% of the time in a year.

We can calculate the number of hours per year using the following formula: Number of hours = Probability * Number of hours in a year= P(13 m/s) * 8760 hours= 0.9743 * 8760= 8531.3 hours (rounded to one decimal place)

Thus, the winds blow at less than 13 m/s for approximately 8531.3 hours per year.

To learn more about probability visit;

https://brainly.com/question/31828911

#SPJ11

the illumination lights in an operating room use a concave mirror to focus an image of a bright lamp onto the surgical site. one such light uses a mirror with a 23 cmcm radius of curvature.

Answers

In an operating room, the illumination lights use a concave mirror to focus an image of a bright lamp onto the surgical site. One such light utilizes a mirror with a 23 cm radius of curvature. The mirror used in an operating room light is a concave mirror. This mirror has a parabolic shape which allows it to focus the light at a specific point.

The radius of curvature of the mirror is 23 cm which means that the distance between the mirror and the center of curvature is 23 cm.

The light source is placed at the center of curvature so that the light rays can be focused on the surgical site. The concave mirror reflects the light rays that enter the mirror from the light source and converges them at the focal point. This is possible because the mirror is parabolic in shape.

The reflected rays that converge at the focal point produce a bright light at the surgical site. The illumination lights in an operating room using concave mirrors help in providing adequate illumination for surgical procedures.

To know more about Curvature visit :

https://brainly.com/question/30652458

#SPJ11

F=ma During a crash, a dummy with a mass of 60.0 kg hits an airbag that exerts a constant force on the dummy. The acceleration of the dummy is –250 m/s2. What force did the airbag exert on the dummy?
a. -4,170 Newtons
b. -15,000 Newtons
c. -23,500 Newtons
d. 240 Newtons

Answers

The force exerted by the airbag on the dummy is -15,000 Newtons.According to Newton's second law of motion, force (F) is equal to mass  multiplied by acceleration.

In this scenario, the dummy has a mass of 60.0 kg and experiences an acceleration of -250 [tex]m/s^2[/tex]. Using the formula F = ma, we can calculate the force exerted by the airbag.

Identify the given values:

Mass of the dummy (m) = 60.0 kg

Acceleration of the dummy (a) = -250 [tex]m/s^2[/tex]

Apply the formula F = ma:

Force (F) = 60.0 kg * (-250 [tex]m/s^2[/tex])

Force (F) = -15,000 Newtons

In this scenario, we are given a crash situation where a dummy with a mass of 60.0 kg hits an airbag. We need to determine the force exerted by the airbag on the dummy. To solve this, we can use Newton's second law of motion, which states that force (F) is equal to mass (m) multiplied by acceleration (a), expressed as F = ma.

First, we identify the given values. The mass of the dummy is provided as 60.0 kg, and the acceleration experienced by the dummy is -250 [tex]m/s^2[/tex]. The negative sign indicates that the acceleration is in the opposite direction to the positive direction of the coordinate system, implying a deceleration or slowing down of the dummy.

Next, we substitute the values into the formula and calculate the force. Multiplying the mass (60.0 kg) by the acceleration (-250 [tex]m/s^2[/tex]), we find that the force exerted by the airbag on the dummy is -15,000 Newtons. The negative sign indicates that the force is directed opposite to the motion of the dummy, acting as a restraining force to slow it down and protect it during the crash.

To summarize, the airbag exerts a force of -15,000 Newtons on the dummy during the crash. This force is essential in reducing the acceleration of the dummy and providing a cushioning effect, minimizing the potential for injuries.

Learn more about Force

brainly.com/question/30507236

#SPJ11

how is g related to the slope of the t 2 vs l graph? is the slope equal to ""g""? explain.

Answers

The acceleration of an object due to gravity is known as the acceleration due to gravity, denoted as “g.” The slope of a t2 versus l graph and g are directly related. The acceleration due to gravity can be calculated using the slope of the t2 versus l graph. The slope of a t2 versus l graph is equal to 4π2/g, implying that the slope and g are inversely proportional. How is g related to the slope of the t 2 vs l graph? The period (t) of a simple pendulum can be determined using the length (l) and acceleration due to gravity (g) of the pendulum. The graph of t2 versus l is linear, and the slope of the graph can be calculated using the following formula:slope = Δt2 / Δlwhere Δ represents the change in the quantity. The slope of a t2 versus l graph is proportional to the acceleration due to gravity, denoted by g. The slope of a t2 versus l graph is given by the equation:y = mx + c where y is t2, x is l, m is the slope of the line, and c is the intercept. The slope of the graph can be calculated using the following formula:m = Δy / Δx = Δt2 / ΔlThe slope of the graph is inversely proportional to the acceleration due to gravity. The slope of the graph is given by:m = 4π2 / gThis implies that if the acceleration due to gravity (g) is known, the slope of the graph can be calculated. Similarly, if the slope of the graph is known, the acceleration due to gravity can be calculated. Is the slope equal to g? Explain.No, the slope of the graph is not equal to g. The slope of the graph is equal to 4π2 / g. The slope of the graph is inversely proportional to the acceleration due to gravity. If the acceleration due to gravity is known, the slope of the graph can be calculated using the formula:m = 4π2 / gHowever, the slope of the graph is not equal to the acceleration due to gravity. The slope of the graph is equal to 4π2 / g, which is inversely proportional to the acceleration due to gravity. The acceleration due to gravity can be calculated using the slope of the graph using the following formula:g = 4π2 / m.Therefore, the slope of the graph is not equal to g, but it is inversely proportional to g.

To know more about acceleration visit

https://brainly.com/question/2303856

#SPJ11

The slope represents g, the slope of the t2 vs. l graph is always equal to g.

The slope of the t2 vs. l graph represents g. This is the relationship between g and the slope of the t2 vs. l graph. Therefore, the slope is equal to g.

The graph of the time squared against the length is referred to as the t2 vs l graph. The time it takes for an object to fall to the ground is represented by t. The height at which the object was dropped is represented by l. The relationship between the two is expressed by the equation t²=2l/g, where g is the acceleration due to gravity. Therefore, in order to find g, one must first calculate the slope of the t2 vs. l graph. As previously said, the slope of the t2 vs. l graph represents g. As a result, the slope is equal to g.

It is expressed as: Slope = Rise / Run

In the same way, g is calculated by the formula: g = 2L / T². The slope of the t2 vs. l graph and g are inextricably linked. Since the slope represents g, the slope of the t2 vs. l graph is always equal to g.

To know more about slope, visit:

https://brainly.com/question/3605446

#SPJ11

Tale of two tanks. (14-56 mod.) Suppose that two tanks, 1 and 2, each with a large opening at the top, contain different liquids. A small hole is made below the liquid surface for both tanks. The hole in tank 1 has half the cross-sectional area but at twice the depth below the surface as the hole in tank 2. What is the ratio p₁/P2 of the densities of the liquids if the mass flow rate is the same for the two holes?

Answers

Answer:

Explanation:

To determine the ratio p₁/P2 of the densities of the liquids, we can use Bernoulli's equation, which relates the pressure, velocity, and height of a fluid. According to Bernoulli's equation, the pressure at two different points in a fluid can be related as follows:

P₁ + 1/2ρ₁v₁² + ρ₁gh₁ = P₂ + 1/2ρ₂v₂² + ρ₂gh₂

Where:

P₁ and P₂ are the pressures at points 1 and 2 respectively,

ρ₁ and ρ₂ are the densities of the liquids in tanks 1 and 2 respectively,

v₁ and v₂ are the velocities of the liquids at the respective holes,

g is the acceleration due to gravity, and

h₁ and h₂ are the depths of the holes below the liquid surface.

Since the mass flow rate is the same for the two holes, we can equate the mass flow rates:

ρ₁Av₁ = ρ₂Av₂

Where A₁ and A₂ are the cross-sectional areas of the holes in tanks 1 and 2 respectively.

Given that the hole in tank 1 has half the cross-sectional area of the hole in tank 2 (A₁ = 1/2A₂), and it is at twice the depth below the surface (h₁ = 2h₂), we can substitute these values into the equations.

From the mass flow rate equation:

ρ₁Av₁ = ρ₂Av₂

Substituting A₁ = 1/2A₂:

ρ₁(1/2)Av₂ = ρ₂Av₂

Canceling out the common terms:

ρ₁/2 = ρ₂

From Bernoulli's equation, we can equate the pressures at the two points:

P₁ + 1/2ρ₁v₁² + ρ₁gh₁ = P₂ + 1/2ρ₂v₂² + ρ₂gh₂

Since the holes are small, the velocity terms (v₁ and v₂) can be assumed to be negligible. Additionally, the pressures at the surface and the holes are atmospheric pressure, so we can ignore those terms as well.

ρ₁gh₁ = ρ₂gh₂

Substituting h₁ = 2h₂ and ρ₁/2 = ρ₂:

2ρ₂g(2h₂) = ρ₂gh₂

Canceling out the common terms:

4h₂ = h₂

Dividing both sides by h₂:

4 = 1

This leads to a contradiction, suggesting that the given conditions are not possible to satisfy. Therefore, there is no valid ratio of the densities of the liquids that would result in the mass flow rate being the same for the two holes.

The ratio p₁/P2 of the densities of the liquids if the mass flow rate is the same for the two holes is 1/2 when The mass flow rate is equal to Av where A is the area of the hole and v is the speed of the liquid emerging from the hole.

Tanks are open, the liquid level will remain constant, so the speed of the liquid emerging from the holes will be the same. Therefore, the ratio of the areas of the holes is the inverse of the ratio of the depths of the holes. Ratio of the cross-sectional areas is 1/2, we have the ratio of the depths of the holes, d1/d2=2.

Speed of the liquid emerging from tank 1 is half that of the liquid emerging from tank 2.If the mass flow rate is the same for both holes, then the mass flow rate out of each hole is equal to the mass flow rate in. The mass flow rate in is proportional to the area of the tank opening.

Tanks are identical, the area of the opening in each tank is the same. Therefore, the density of the liquid in tank 1 is half that of the liquid in tank 2. Therefore, the ratio is p₁/P2=1/2.

Know more about density here:

https://brainly.com/question/6107689

#SPJ11

post your predictions on the Energy Forum for each section. Activity 1 : You will use the formula mc ??-- mc ?7to determine specific heat capacity of water. 1. How does the temperature and specific heat capacity of a sample of water (the calorimeter) change as a different mass or temperature of hot metal is added to it? 2. How does the temperature and specific heat capacity of a sample of water (the calorimeter) change as the volume of water is changed?

Answers

1. As we add different mass or temperature of hot metal to water, the temperature of the water increases. But, the specific heat capacity of the water remains constant. When hot metal of mass m₁ and temperature T₁ is added to water of mass m₂ and temperature T₂, the final temperature of the water and metal mixture becomes T₃.

2. As the volume of water is changed, its specific heat capacity remains constant. However, the temperature of the water changes. The change in temperature is directly proportional to the heat gained or lost by the water. The formula to find out the amount of heat gained or lost by water is as follows:

q = m x c x ΔT

Where q = amount of heat energy gained or lost, m = mass of the water, c = specific heat capacity of water and ΔT = change in temperature of water.

1. When we add hot metal to water, some amount of heat is transferred from the hot metal to water. As a result, the temperature of water rises and reaches a final temperature. The specific heat capacity of water remains constant because the formula to calculate the heat transferred is:

q = m x c x ΔT

where q is the heat transferred, m is the mass of water, c is the specific heat capacity of water and ΔT is the change in temperature. So, if the mass and temperature of the metal is changed, only the value of q changes but the specific heat capacity of water remains the same.

2. When the volume of water is changed, its specific heat capacity remains constant because the specific heat capacity is an intrinsic property of the material. But the temperature of the water changes because the amount of heat energy required to change the temperature of water is proportional to its mass. This is given by the formula q = m x c x ΔT, where q is the heat energy transferred, m is the mass of water, c is the specific heat capacity and ΔT is the change in temperature. So, if the volume of water is changed, the mass of water also changes and hence the value of q changes.

Thus, we can conclude that the specific heat capacity of water remains constant irrespective of the mass or temperature of hot metal added to it. Also, the specific heat capacity of water remains constant even if the volume of water is changed. However, the temperature of water changes based on the amount of heat energy transferred to or from the water.

To know more about specific heat capacity, visit:

https://brainly.com/question/28302909

#SPJ11

A 0.62 m copper rod with a mass of 0.14 kg carries a current of 12 A in the positive x direction. Let upward be the positive y f5 6/1/22, 10:37 AI What is the magnitude of the minimum magnetic field needed to levitate the rod?

Answers

The magnitude of the minimum magnetic field needed to levitate the rod is approximately 0.185 T.

To calculate the magnitude of the minimum magnetic field needed to levitate the copper rod, we can use the equation for the magnetic force on a current-carrying wire: F = BILsin(θ)

Where:

F is the magnetic force

B is the magnetic field

I is the current

L is the length of the wire

θ is the angle between the magnetic field and the current direction

In this case, the copper rod carries a current of 12 A in the positive x direction, and we need to find the minimum magnetic field required to levitate it.

Given:

Length of the rod (L) = 0.62 m

Mass of the rod (m) = 0.14 kg

Current (I) = 12 A

First, let's calculate the magnetic force required to counteract the weight of the rod (assuming the rod is in a uniform magnetic field and the angle θ is 90 degrees, perpendicular to the field):

F = mg

Where:

m is the mass of the rod

g is the acceleration due to gravity (approximately 9.8 m/s^2)

F = (0.14 kg) * (9.8 m/s^2) = 1.372 N

Now, we can rearrange the formula for the magnetic force to solve for the magnetic field (B):

B = F / (ILsin(θ))

Since sin(90 degrees) = 1, we can simplify the equation:

B = F / (IL)

B = 1.372 N / (12 A * 0.62 m)

Using a calculator, the magnitude of the minimum magnetic field needed to levitate the rod is approximately:

B ≈ 0.185 T (tesla)

Therefore, the magnitude of the minimum magnetic field needed to levitate the rod is approximately 0.185 T.

To learn more about magnitude here:

https://brainly.com/question/28714281

#SPJ11

Other Questions
find the midpoint riemann sum approximation to the displacement on [0,2] with n = 2and n = 4 Which of the following features does NOTenhance a leaf's ability to absorb solarenergy? Idont understand how to do thisNow, you will verify the lens equation by keeping the characteristics of the lens constant and changing the image distance. Write your procedure below, record your results, calculate the magnification In California, a noncompete clause restricting an employee from being able to switch jobs to a competitor is likely to be:a. Unenforceable b. Absolutely enforceable c. Enforceable so long as due process is provided. d. Enforceable so long as it meets the former employees business objectives. the general aggression model proposes that when aggression occurs, it will be 33. Detailed description of Tesla's brand development strategiesof Line Extension, BrandExtension, Multibrands and Newbrands. [essay style, 500 words] calculate the number of grams of fe2o3 needed to react with 18.3 g c. Exhibit: Factors of Production Data Period Y K K L Share of Labor in Output 1 100 200 100 0.5 1 106 205 102 0.5 3 111 210 104 0.5 4 110.5 215 104 0.5 5 110 220 104 0.5 Assuming A = 1 in the first period, the value of A in period 2 is: 1.046 O 1.0636 1.0375 O 1.0293 The extracts from the payroll of M/s. Maheswari Bros. is as follows:-Number of employees at the beginning of 2015 150Number of employees at the end of 2015 200Number of employees resigned 20Number of employees discharged 5Number of employees replaced due to resignation and discharges 20Calculate the Labour Turnover Rate for the factory by different methods. The present economic system of the United Kingdom would be most accurately described as while the present economic system of Spain O a mixed economy; would be most accurately described as pure socialism. O a mixed economy; would also be most accurately described as a mixed economy. pure socialism; would be most accurately described as communism. Opure capitalism; would be most accurately described as pure socialism. what is the product of the following reaction? ch3ch2o - hcl Four existing facilities are located at (4, 2), (8, 5), (11, 8), and (13, 2). The weights are equal to 1/6, 1/3,1/3, and 1/6 respectively.(a) Find the optimal solution for the minisum location model with Euclidean distance.(b) Find the optimal solution for the minisum location model with rectilinear distance.(c) Draw weight diagrams for x and y axes. Determine optimal solution from both the optimal diagrams.(d) Show the existing and new facilities obtained by each of the above methods on a 15 Rudy Co. received $36,000 in advance from customers on March 1, 2021 for a year subscription to a monthly magazine that is mailed each month beginning in April 2021. The company appropriately recorded the full amount received as a liability. The journal entry to record the mailling of the April 2021 edition of the magazine would include: OA a debit to Unearned Revenue and a credit to Accounts Receivable OB. a debit to Subscription Revenue and a credit to Accounts Receivable OC a debit to Subscription Revenue and a credit to Unearned Revenue OD. a debit to Unearned Revenue and a credit to Subscription Revenue Elizabeth Hitchens and Nicole Wallace are partners in Gold Coast Ventures. The basis of either partner's interest in Gold Coast Ventures would be increased by:Charitable contributions.Distributions of money and the adjusted basis of other property distributed to the partner.The partner's distributive share of partnership losses.The partner's distributive share of partnership ordinary income. Evaluate The Indefinite Integral As A Power Series. Integral T/1 - T^5 Dt C + Sigma^Infinity_n = 0 What Is The Radius Of convergence R why were the american patriots willing to risk their lives for independence Draw the product of the hydrogenation of 2butyne. Draw all hydrogen atoms. H3CCCCH3+2H2Pt Describe the Hersey-Blanchard Situational Leadership theory, and provide specific examples of how the theory can be applied in the workplace. 1. Balance of Payments Accounting For each of the following transactions, indicate which line (or lines) of the US balance of payments it would show up in, and whether it would be recorded as a credit or debit transaction for the US. Remember, broadly there are two accounts: the current account and the financial account. Both of these are made up of various different flows of credits and debits. a. A Norwegian pension fund buys stock in an American company. b. An American family spends money on food and accommodation while on vacation in Italy. c. An American manufacturing company generates profits from a subsidiary in Mexico and reinvests these funds to expand the subsidiary. d. A Chinese company purchases a shipment of soybean oil from an American company, paying for it with a loan from an American bank. What is disparate treatment? Explain / Give an exampleWhat is the disparate impact? Explain / Give an example